20 research outputs found

    Radiation-Induced Degradation Mechanism of X-ray SOI Pixel Sensors with Pinned Depleted Diode Structure

    Full text link
    The X-ray Silicon-On-Insulator (SOI) pixel sensor named XRPIX has been developed for the future X-ray astronomical satellite FORCE. XRPIX is capable of a wide-band X-ray imaging spectroscopy from below 1 keV to a few tens of keV with a good timing resolution of a few tens of μ\mus. However, it had a major issue with its radiation tolerance to the total ionizing dose (TID) effect because of its thick buried oxide layer due to the SOI structure. Although new device structures introducing pinned depleted diodes dramatically improved radiation tolerance, it remained unknown how radiation effects degrade the sensor performance. Thus, this paper reports the results of a study of the degradation mechanism of XRPIX due to radiation using device simulations. In particular, mechanisms of increases in dark current and readout noise are investigated by simulation, taking into account the positive charge accumulation in the oxide layer and the increase in the surface recombination velocity at the interface between the sensor layer and the oxide layer. As a result, it is found that the depletion of the buried p-well at the interface increases the dark current, and that the increase in the sense-node capacitance increases the readout noise.Comment: 7 pages, 10 figures, accepted for publication in IEEE-TN

    Single Event Tolerance of X-ray SOI Pixel Sensors

    Full text link
    We evaluate the single event tolerance of the X-ray silicon-on-insulator (SOI) pixel sensor named XRPIX, developed for the future X-ray astronomical satellite FORCE. In this work, we measure the cross-section of single event upset (SEU) of the shift register on XRPIX by irradiating heavy ion beams with linear energy transfer (LET) ranging from 0.022 MeV/(mg/cm2) to 68 MeV/(mg/cm2). From the SEU cross-section curve, the saturation cross-section and threshold LET are successfully obtained to be 3.40.9+2.9×1010 cm2/bit3.4^{+2.9}_{-0.9}\times 10^{-10}~{\rm cm^2/bit} and 7.33.5+1.9 MeV/(mg/cm2)7.3^{+1.9}_{-3.5}~{\rm MeV/(mg/cm^2)}, respectively. Using these values, the SEU rate in orbit is estimated to be \lesssim 0.1 event/year primarily due to the secondary particles induced by cosmic-ray protons. This SEU rate of the shift register on XRPIX is negligible in the FORCE orbit.Comment: 9 pages, 5 figures, accepted for publication in JATI

    X-ray Radiation Damage Effects on Double-SOI Pixel Detectors for the Future Astronomical Satellite "FORCE"

    Full text link
    We have been developing the monolithic active pixel detector "XRPIX" onboard the future X-ray astronomical satellite "FORCE". XRPIX is composed of CMOS pixel circuits, SiO2 insulator, and Si sensor by utilizing the silicon-on-insulator (SOI) technology. When the semiconductor detector is operated in orbit, it suffers from radiation damage due to X-rays emitted from the celestial objects as well as cosmic rays. From previous studies, positive charges trapped in the SiO2 insulator are known to cause the degradation of the detector performance. To improve the radiation hardness, we developed XRPIX equipped with Double-SOI (D-SOI) structure, introducing an additional silicon layer in the SiO2 insulator. This structure is aimed at compensating for the effect of the trapped positive charges. Although the radiation hardness to cosmic rays of the D-SOI detectors has been evaluated, the radiation effect due to the X-ray irradiation has not been evaluated. Then, we conduct an X-ray irradiation experiment using an X-ray generator with a total dose of 10 krad at the SiO2 insulator, equivalent to 7 years in orbit. As a result of this experiment, the energy resolution in full-width half maximum for the 5.9 keV X-ray degrades by 17.8 ±\pm 2.8% and the dark current increases by 89 ±\pm 13%. We also investigate the physical mechanism of the increase in the dark current due to X-ray irradiation using TCAD simulation. It is found that the increase in the dark current can be explained by the increase in the interface state density at the Si/SiO2 interface.Comment: 15 pages, 12 figures, accepted for publication in Journal of Astronomical Telescopes, Instruments, and System

    Pathological Characteristics of a Patient with Severe Fever with Thrombocytopenia Syndrome (SFTS) Infected with SFTS Virus through a Sick Cat’s Bite

    Full text link
    A woman in her fifties showed symptoms of fever, loss of appetite, vomiting, and general fatigue 2 days after she was bitten by a sick cat, which had later died, in Yamaguchi prefecture, western Japan, in June 2016. She subsequently died of multiorgan failure, and an autopsy was performed to determine the cause of death. However, the etiological pathogens were not quickly identified. The pathological features of the patient were retrospectively re-examined, and the pathology of the regional lymph node at the site of the cat bite was found to show necrotizing lymphadenitis with hemophagocytosis. The pathological features were noted to be similar to those of patients reported to have severe fever with thrombocytopenia syndrome (SFTS). Therefore, the lymph node section was retrospectively tested immunohistochemically, revealing the presence of the SFTS virus (SFTSV) antigen. The sick cat showed similar symptoms and laboratory findings similar to those shown in human SFTS cases. The patient had no history of tick bites, and did not have skin lesions suggestive of these. She had not undertaken any outdoor activities. It is highly possible that the patient was infected with SFTSV through the sick cat’s bite. If a patient gets sick in an SFTS-endemic region after being bitten by a cat, SFTS should be considered in the differential diagnosis

    Radiation damage effects on double-SOI pixel sensors for X-ray astronomy

    Full text link
    The X-ray SOI pixel sensor onboard the FORCE satellite will be placed in the low earth orbit and will consequently suffer from the radiation effects mainly caused by geomagnetically trapped cosmic-ray protons. Based on previous studies on the effects of radiation on SOI pixel sensors, the positive charges trapped in the oxide layer significantly affect the performance of the sensor. To improve the radiation hardness of the SOI pixel sensors, we introduced a double-SOI (D-SOI) structure containing an additional middle Si layer in the oxide layer. The negative potential applied on the middle Si layer compensates for the radiation effects, due to the trapped positive charges. Although the radiation hardness of the D-SOI pixel sensors for applications in high-energy accelerators has been evaluated, radiation effects for astronomical application in the D-SOI sensors has not been evaluated thus far. To evaluate the radiation effects of the D-SOI sensor, we perform an irradiation experiment using a 6-MeV proton beam with a total dose of , corresponding to a few tens of years of in-orbit operation. This experiment indicates an improvement in the radiation hardness of the X-ray D-SOI devices. On using an irradiation of 5 krad on the D-SOI device, the energy resolution in the full-width half maximum for the 5.9-keV X-ray increases by , and the chip output gain decreases by . The physical mechanism of the gain degradation is also investigated; it is found that the gain degradation is caused by an increase in the parasitic capacitance due to the enlarged buried n-well
    corecore