74 research outputs found

    Recovery of Phosphate Rock Equivalents from Incineration Ash of Chicken Manure by Elution-Precipitation Treatment

    Get PDF
    In order to obtain calcium phosphates - a phosphate rock equivalent - from the incineration ash of chicken manure, which is obtained from power generation systems that use the manure for fuel, incineration ash was treated with an aqueous solution of nitric acid to elute phosphorus. By using 0.3 M of HNO3, most of the phosphorus could be eluted from 1.0 g of ash within 0.1 h. Compared with the composted chicken manure that was previously examined in our laboratory, the concentration of HNO3 was increased for this session of elution. Using the incineration ash of chicken manure made it possible to remove inorganic species at a lower boiling or sublimation temperature, and organic species by calcination in the power generation system. Compared with composted chicken manure, the concentrations of phosphorus contained in the incineration ash and the nitric acid extract were higher in the incineration ash. XRD analysis showed that the obtained nitric acid extract could be treated with aqueous NH3 to form a precipitation of poorly-crystallized calcium hydroxyapatite (Ca10(PO4)6(OH)2), which is one of main components in phosphate rock. In order to confirm the formation and purity of calcium phosphate species, the precipitation calcination was conducted at 1,078 K for 5 h. XRD revealed that the calcined solid was tricalcium phosphate, and no contamination was evident. These results reveal that a phosphate rock equivalent could be easily obtained from the incineration ash of chicken manure, which means that approximately 14% of the phosphate rock that is currently being imported into Japan could be replaced by this product

    Case Report: Tuberous sclerosis complex-associated hemihypertrophy successfully treated with mTOR inhibitor sirolimus

    Get PDF
    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by a mutation in either of the two tumor suppressor genes, TSC1 and TSC2. Due to dysregulated activity of the mammalian target of rapamycin (mTOR) pathway, hamartomas or benign tumors frequently occur in many organs and are often treated with mTOR inhibitors. Hemihypertrophy is a rare complication of TSC. Although not being a tumor, progressive overgrowth of the affected limb may cause cosmetic and functional problems, for which the efficacy of mTOR inhibitors has not been reported previously. We herein report a case of TSC-associated hemihypertrophy. In this case, genetic studies revealed TSC1 loss of heterozygosity as the cause of hemihypertrophy. Clinically, pharmacological treatment with an mTOR inhibitor sirolimus successfully ameliorated cosmetic and functional problems with no intolerable adverse effects

    Notable underlying mechanism for pancreatic β-cell dysfunction and atherosclerosis: Pleiotropic roles of incretin and insulin signaling

    Get PDF
    Under healthy conditions, pancreatic β-cells produce and secrete the insulin hormone in response to blood glucose levels. Under diabetic conditions, however, β-cells are compelled to continuously secrete larger amounts of insulin to reduce blood glucose levels, and thereby, the β-cell function is debilitated in the long run. In the diabetic state, expression levels of insulin gene transcription factors and incretin receptors are downregulated, which we think is closely associated with β-cell failure. These data also suggest that it would be better to use incretin-based drugs at an early stage of diabetes when incretin receptor expression is preserved. Indeed, it was shown that incretin-based drugs exerted more protective effects on β-cells at an early stage. Furthermore, it was shown recently that endothelial cell dysfunction was also associated with pancreatic β-cell dysfunction. After ablation of insulin signaling in endothelial cells, the β-cell function and mass were substantially reduced, which was also accompanied by reduced expression of insulin gene transcription factors and incretin receptors in β-cells. On the other hand, it has been drawing much attention that incretin plays a protective role against the development of atherosclerosis. Many basic and clinical data have underscored the importance of incretin in arteries. Furthermore, it was shown recently that incretin receptor expression was downregulated in arteries under diabetic conditions, which likely diminishes the protective effects of incretin against atherosclerosis. Furthermore, a series of large-scale clinical trials (SPAED-A, SPIKE, LEADER, SUSTAIN-6, REWIND, PIONEER trials) have shown that various incretin-related drugs have beneficial effects against atherosclerosis and subsequent cardiovascular events. These data strengthen the hypothesis that incretin plays an important role in the arteries of humans, as well as rodents.Kaneto, H.; Obata, A.; Kimura, T.; Shimoda, M.; Sanada, J.; Fushimi, Y.; Katakami, N.; Matsuoka, T.; Kaku, K. Notable Underlying Mechanism for Pancreatic β-Cell Dysfunction and Atherosclerosis: Pleiotropic Roles of Incretin and Insulin Signaling. Int. J. Mol. Sci. 2020, 21, 9444

    Incidence of endocrine-related immune-related adverse events in Japanese subjects with various types of cancer

    Get PDF
    BackgroundImmune checkpoint inhibitors (ICIs), such as cytotoxic T lymphocyte antigen-4 (CTLA-4) inhibitors, programmed cell death protein 1 (PD-1) inhibitors, and programmed cell death protein 1 ligand 1 (PD-L1) inhibitors, are often used to treat a variety of malignancies. ICIs are known to cause endocrine-related immune-related adverse events (irAEs), but the incidence varies among reports and/or agents. This study evaluated the incidence of endocrine-related irAEs in patients who were treated with ICIs in Japan.MethodThis single-center, retrospective, observational study examined the incidence and clinical characteristics of endocrine-related irAEs in 466 participants who were treated with ICIs at Kawasaki Medical School Hospital.ResultThe mean age of participants with and without endocrine-related irAEs was 69.1 ± 1.8 years and 68.1 ± 1.1 years, respectively, with no difference between them. The overall incidence of any endocrine-related irAEs among the participants was 25.5%. Hypothyroidism was prevalent in 24.3%, hypoadrenocorticism in 3.2%, hypopituitarism in 0.9%, and insulin-dependent diabetes mellitus in 1.1%. Participants receiving combination therapy with CTLA-4 and PD-1 inhibitors had a significantly higher incidence of endocrine-related irAEs than those receiving monotherapy.ConclusionEndocrine-related irAEs correlated significantly with survival and mean observation period. There was substantial difference in the incidence of endocrine-related irAEs among various types of ICIs and types of cancer. We should bear in mind that endocrine testing is necessary during the treatment with ICIs

    Measurement of Material Properties of Steel Sheets Using Laser Ultrasonic Technology

    Get PDF
    AbstractA non-contact laser ultrasound measuring system for material properties of high-strength steels was developed. This system can measure material properties such as crystal grain size by analyzing high-frequency ultrasound waveforms generated by a pulsed laser. For this purpose, a light equalizing device is applied to the pulsed laser path so that the excited ultrasound can propagate a long distance without being weakened by diffusion. Therefore, the characteristics of the waveform can be captured clearly and analyzed correctly by this system. The advantages of this device were confirmed by numerical simulation of the ultrasonic propagation. The capability of this measuring system was shown by experimental measurement of various high-strength steel specimens. The measured crystal grain sizes showed good agreement with the results of SEM-EBSD observations. The measured crystal grain size also showed good correlation with the tensile test results

    Multifaceted Mechanisms of Action of Metformin Which Have Been Unraveled One after Another in the Long History

    No full text
    While there are various kinds of drugs for type 2 diabetes mellitus at present, in this review article, we focus on metformin which is an insulin sensitizer and is often used as a first-choice drug worldwide. Metformin mainly activates adenosine monophosphate-activated protein kinase (AMPK) in the liver which leads to suppression of fatty acid synthesis and gluconeogenesis. Metformin activates AMPK in skeletal muscle as well, which increases translocation of glucose transporter 4 to the cell membrane and thereby increases glucose uptake. Further, metformin suppresses glucagon signaling in the liver by suppressing adenylate cyclase which leads to suppression of gluconeogenesis. In addition, metformin reduces autophagy failure observed in pancreatic β-cells under diabetic conditions. Furthermore, it is known that metformin alters the gut microbiome and facilitates the transport of glucose from the circulation into excrement. It is also known that metformin reduces food intake and lowers body weight by increasing circulating levels of the peptide hormone growth/differentiation factor 15 (GDF15). Furthermore, much attention has been drawn to the fact that the frequency of various cancers is lower in subjects taking metformin. Metformin suppresses the mechanistic target of rapamycin (mTOR) by activating AMPK in pre-neoplastic cells, which leads to suppression of cell growth and an increase in apoptosis in pre-neoplastic cells. It has been shown recently that metformin consumption potentially influences the mortality in patients with type 2 diabetes mellitus and coronavirus infectious disease (COVID-19). Taken together, metformin is an old drug, but multifaceted mechanisms of action of metformin have been unraveled one after another in its long history
    corecore