276 research outputs found

    Spin pumping into superconductors: A new probe of spin dynamics in a superconducting thin film

    Get PDF
    Spin pumping refers to the microwave-driven spin current injection from a ferromagnet into the adjacent target material. We theoretically investigate the spin pumping into superconductors by fully taking account of impurity spin-orbit scattering that is indispensable to describe diffusive spin transport with finite spin diffusion length. We calculate temperature dependence of the spin pumping signal and show that a pronounced coherence peak appears immediately below the superconducting transition temperature Tc, which survives even in the presence of the spin-orbit scattering. The phenomenon provides us with a new way of studying the dynamic spin susceptibility in a superconducting thin film. This is contrasted with the nuclear magnetic resonance technique used to study a bulk superconductor

    Magnetocaloric Effects in Metamagnetic Shape Memory Alloys

    Get PDF
    Recently, metamagnetic shape memory alloys have attracted much attention as candidates for the rare-earth free magnetic refrigerants. These materials undergo the martensitic transformation (MT) at around room temperature accompanied by a significant entropy change. The application of the magnetic field at the low-temperature martensitic phase realizes the magnetic field-induced martensitic transformation (MFIMT). Through the MFIMT, the materials show an unconventional magnetocaloric effect (MCE), which is called inverse magnetocaloric effect (IMCE). In this chapter, the direct measurement system of MCE in pulsed-high-magnetic fields is introduced. With taking the advantage of the fast field-sweep rate of pulsed field, adiabatic measurements of MCE are carried out at various temperatures. Using this technique, the IMCEs of the metamagnetic shape memory alloys NiCoMnIn and NiCoMnGa are directly measured as adiabatic temperature changes in pulsed fields. From the experimental data of MCE for NiCoMnIn, the entropy of spin system in the austenite phase is estimated through a simple mean-field model. By the combination of MCE, magnetization and specific heat measurements, the electronic, lattice and magnetic contributions to the IMCE are individually evaluated. The result for NiCoMnIn demonstrates that lattice entropy plays the dominant role for IMCE in this material

    Neuroendocrine Carcinoma of the Stomach: A Case Study

    Get PDF
    Gastric neuroendocrine carcinomas are rare and have a poor prognosis, and the diagnostic criteria for this disease have recently changed. We herein report a case of sporadic gastric neuroendocrine carcinoma. A 75-year-old man was referred to our hospital with epigastric pain. Endoscopic examination revealed a localized ulcerative lesion (diameter, 4 cm) at the upper stomach. The diagnosis on biopsy was neuroendocrine carcinoma. Total gastrectomy with D2 lymphadenectomy, splenectomy, and cholecystectomy was performed. Pathologically, the tumor infiltrated the subserosal layer, and 6/49 lymph nodes were involved. The tumor was uniform in shape and arranged in a rosette-like structure to form solid nests, with medium-sized, round-to-cuboid-shaped tumor cells and intense mitosis 46/10 HPF. It was positive for synaptophysin and chromogranin A, and the Ki-67 labeling index was 70–80%. The diagnosis of neuroendocrine carcinoma was made according to the WHO 2010 criteria. The patient was followed up for three years without recurrence

    Malignant peripheral nerve sheath tumor arising from the greater omentum: Case report

    Get PDF
    Malignant peripheral nerve sheath tumors (MPNSTs) are rare soft tissue tumors that arise from a peripheral nerve or exhibit nerve sheath differentiation. Most of these tumors arise on the trunk, extremities, or head and neck regions; they are very rarely located in the abdominal cavity. The patient was a 71-year-old man who was referred to our hospital for a mass and pain in the right lower abdomen. Abdominal computed tomography revealed a large (9 × 9 cm), well-circumscribed, lobulated, heterogeneously enhanced mass in the pelvis. Exploratory laparotomy revealed a large mass in the greater omentum, and the tumor was completely excised. Histopathological analysis revealed that the tumor was composed of spindle cells with high mitotic activity. On staining the tumor, positive results were obtained for S-100 but negative results were obtained for c-kit, cluster of differentiation (CD)34, α-smooth muscle actin, and desmin. These findings strongly supported a diagnosis of MPNST primarily arising from the greater omentum. To the best of our knowledge, this is the first reported case of an MPNST arising from the greater omentum. In this report, we have described the case of a patient with an MPNST arising from the greater omentum and have discussed the clinical characteristics and management of MPNSTs

    Increased production of intestinal immunoglobulins in Syntenin-1-deficient mice

    Get PDF
    AbstractSyntenin-1 is an intracellular PDZ protein that binds multiple proteins and regulates protein trafficking, cancer metastasis, exosome production, synaptic formation, and IL-5 signaling. However, the functions of Syntenin-1 have not yet been clearly characterized in detail, especially in vivo. In this study, we generated a Syntenin-1 knock out (KO) mouse strain and analyzed the role(s) of Syntenin-1 in IL-5 signaling, because the direct interaction of Syntenin-1 with the cytoplasmic domain of the IL-5 receptor α subunit and the regulation of IL-5 signaling by Syntenin-1 have been reported. Unexpectedly, the number of IL-5-responding cells was normal and the levels of fecal immunoglobulins were rather higher in the Syntenin-1 KO mice. We also found that IgA and IgM production of splenic B cells stimulated in vitro was increased in Syntenin-1 KO mice. In addition, we showed that a distribution of intestinal microbial flora was influenced in Syntenin-1 KO mice. Our data indicate that Syntenin-1 negatively regulates the intestinal immunoglobulin production and has a function to maintain the intestinal homeostasis in vivo. The analysis of Syntenin-1 KO mice may provide novel information on not only mucosal immunity but also other functions of Syntenin-1 such as cancer metastasis and neural development

    SOCS-1/SSI-1-Deficient NKT Cells Participate in Severe Hepatitis through Dysregulated Cross-Talk Inhibition of IFN-γ and IL-4 Signaling In Vivo

    Get PDF
    AbstractSuppressor of cytokine signaling-1 (SOCS-1), also known as STAT-induced STAT inhibitor-1 (SSI-1), is a negative feedback molecule for cytokine signaling, and its in vivo deletion induces fulminant hepatitis. However, elimination of the STAT1 or STAT6 gene or deletion of NKT cells substantially prevented severe hepatitis in SOCS-1-deficient mice, while administration of IFN-γ and IL-4 accelerated its development. SOCS-1 deficiency not only sustained IFN-γ/IL-4 signaling but also eliminated the cross-inhibitory action of IFN-γ on IL-4 signaling. These results suggest that SOCS-1 deficiency-induced persistent activation of STAT1 and STAT6, which would be inhibited by SOCS-1 under normal conditions, may induce abnormal activation of NKT cells, thus leading to lethal pathological changes in SOCS-1-deficient mice

    Regulation of Npt2b gene promoter activity by RAR/RXR-C/EBP

    Get PDF
    Inorganic phosphate (Pi) homeostasis is regulated by intestinal absorption via type II sodium-dependent co-transporter (Npt2b) and by renal reabsorption via Npt2a and Npt2c. Although we previously reported that vitamin A-deficient (VAD) rats had increased urine Pi excretion through the decreased renal expression of Npt2a and Npt2c, the effect of vitamin A on the intestinal Npt2b expression remains unclear. In this study, we investigated the effects of treatment with all-trans retinoic acid (ATRA), a metabolite of vitamin A, on the Pi absorption and the Npt2b expression in the intestine of VAD rats, as well as and the underlying molecular mechanisms. In VAD rats, the intestinal Pi uptake activity and the expression of Npt2b were increased, but were reduced by the administration of ATRA. The transcriptional activity of reporter plasmid containing the promoter region of the rat Npt2b gene was reduced by ATRA in NIH3T3 cells overexpressing retinoic acid receptor (RAR) and retinoid X receptor (RXR). On the other hand, CCAAT/enhancer-binding proteins (C/EBP) induced transcriptional activity of the Npt2b gene. Knockdown of the C/EBP gene and a mutation analysis of the C/EBP responsible element in the Npt2b gene promoter indicated that C/EBP plays a pivotal role in the regulation of Npt2b gene transcriptional activity by ATRA. EMSA revealed that the RAR/RXR complex inhibits binding of C/EBP to Npt2 b gene promoter. Together, these results suggest that ATRA may reduce the intestinal Pi uptake by preventing C/EBP activation of the intestinal Npt2b gene

    Increase of GADD34 expression in skeletal muscle by ATRA

    Get PDF
    All-trans retinoic acid (ATRA) increases the sensitivity to unfolded protein response in differentiating leukemic blasts. The downstream transcriptional factor of PERK, a major arm of unfolded protein response, regulates muscle differentiation. However, the role of growth arrest and DNA damage-inducible protein 34 (GADD34), one of the downstream factors of PERK, and the effects of ATRA on GADD34 expression in muscle remain unclear. In this study, we identified ATRA increased the GADD34 expression independent of the PERK signal in the gastrocnemius muscle of mice. ATRA up-regulated GADD34 expression through the transcriptional activation of GADD34 gene via inhibiting the interaction of homeobox Six1 and transcription co-repressor TLE3 with the MEF3-binding site on the GADD34 gene promoter in skeletal muscle. ATRA also inhibited the interaction of TTP, which induces mRNA degradation, with AU-rich element on GADD34 mRNA via p-38 MAPK, resulting in the instability of GADD34 mRNA. Overexpressed GADD34 in C2C12 cells changes the type of myosin heavy chain in myotubes. These results suggest ATRA increases GADD34 expression via transcriptional and post-transcriptional regulation, which changes muscle fiber type

    stearoyl-CoA desaturaseの低下は慢性腎臓病における過剰な小胞体ストレスを介して筋萎縮に寄与する

    Get PDF
    Skeletal muscle atrophy is associated with mortality and poor prognosis in patients with chronic kidney disease (CKD). However, underlying mechanism by which CKD causes muscle atrophy has not been completely understood. The quality of lipids (lipoquality), which is defined as the functional features of diverse lipid species, has recently been recognized as the pathology of various diseases. In this study, we investigated the roles of the stearoyl-CoA desaturase (SCD), which catalyzes the conversion of saturated fatty acids into monounsaturated fatty acids, in skeletal muscle on muscle atrophy in CKD model animals. In comparison to control rats, CKD rats decreased the SCD activity and its gene expression in atrophic gastrocnemius muscle. Next, oleic acid blocked the reduction of the thickness of C2C12 myotubes and the increase of the endoplasmic reticulum stress induced by SCD inhibitor. Furthermore, endoplasmic reticulum stress inhibitor ameliorated CKD-induced muscle atrophy (the weakness of grip strength and the decrease of muscle fiber size of gastrocnemius muscle) in mice and the reduction of the thickness of C2C12 myotubes by SCD inhibitor. These results suggest that the repression of SCD activity causes muscle atrophy through excessive endoplasmic reticulum stress in CKD
    corecore