39 research outputs found

    Effective gauge field theory of the t-J model in the charge-spin separated state and its transport properties

    Full text link
    We study the slave-boson t-J model of cuprates with high superconducting transition temperatures, and derive its low-energy effective field theory for the charge-spin separated state in a self-consistent manner. The phase degrees of freedom of the mean field for hoppings of holons and spinons can be regarded as a U(1) gauge field, AiA_i. The charge-spin separation occurs below certain temperature, TCSST_{\rm CSS}, as a deconfinement phenomenon of the dynamics of AiA_i. Below certain temperature TSG(<TCSS)T_{\rm SG} (< T_{\rm CSS}), the spin-gap phase develops as the Higgs phase of the gauge-field dynamics, and AiA_i acquires a mass mAm_A. The effective field theory near TSGT_{\rm SG} takes the form of Ginzburg-Landau theory of a complex scalar field λ\lambda coupled with AiA_i, where λ\lambda represents d-wave pairings of spinons. Three dimensionality of the system is crucial to realize a phase transition at TSGT_{\rm SG}. By using this field theory, we calculate the dc resistivity ρ\rho. At T>TSGT > T_{\rm SG}, ρ\rho is proportional to TT. At T<TSGT < T_{\rm SG}, it deviates downward from the TT-linear behavior as ρT{1c(TSGT)d}\rho \propto T \{1 -c(T_{\rm SG}-T)^d \}. When the system is near (but not) two dimensional, due to the compactness of the phase of the field λ\lambda, the exponent dd deviates from its mean-field value 1/2 and becomes a nonuniversal quantity which depends on temperature and doping. This significantly improves the comparison with the experimental data
    corecore