72 research outputs found

    Relation between Vortex Excitation and Thermal Conductivity in Superconductors

    Full text link
    Thermal conductivity κxx(T)\kappa_{xx}(T) under a field is investigated in dx2−y2d_{x^2-y^2}-wave superconductors and isotropic s-wave superconductors by the linear response theory, using a microscopic wave function of the vortex lattice states. To study the origin of the different field dependence of κxx(T)\kappa_{xx}(T) between higher and lower temperature regions, we analyze the spatially-resolved thermal conductivity around a vortex at each temperature, which is related to the spectrum of the local density of states. We also discuss the electric conductivity in the same formulation for a comparison.Comment: 9 pages, 11 figures, to appear in European Physical Journal

    Site-selective NMR for odd-frequency Cooper pairs around vortex in chiral p-wave superconductors

    Get PDF
    In order to identify the pairing symmetry with chirality, we study site-selective NMR in chiral p-wave superconductors. We calculate local nuclear relaxation rate 1/T_1 in the vortex lattice state by Eilenberger theory, including the applied magnetic field dependence. We find that 1/T_1 in the NMR resonance line shape is different between two chiral states p_{pm}(=p_x{pm}ip_y), depending on whether the chirality is parallel or anti-parallel to the vorticity. Anomalous suppression of 1/T_1 occurs around the vortex core in the chiral p_- wave due to the negative coherence term coming from the odd-frequency s-wave Cooper pair induced around the vortex with Majorana state.Comment: 6 pages, 4 figure

    Magnetization process in a chiral p-wave superconductor with multi-domains

    Full text link
    A simulation study for the magnetization process is performed for the multi-domain state in a chiral p-wave superconductor, using the time-dependent Ginzburg-Landau theory. The external field penetrates inside as core-less vortices through the domain wall, forming the vortex sheet structure. We find that, with increasing magnetic fields, the domain walls move so that the unstable domains shrink to vanish. Therefore, the single domain structure is realized at higher fields

    Flux flow and pinning of the vortex sheet structure in a two-component superconductor

    Full text link
    A simulation study using the time-dependent Ginzburg-Landau theory is performed for the vortex state in two-component superconductors, such as PrOs_4_Sb_12_. We investigate the flux flow and the pinning of the vortex sheet structure. We find domain wall that traps half flux-quantum vortices and moves with the flux flow. In the pinning case, we observe an emitting process of a conventional vortex from the vortex sheet by combining a pair of half flux-quantum vortices.Comment: 4 pages, 4 figures, to appear in Phys. Rev.
    • …
    corecore