93 research outputs found

    Our Environment in Hot Water: Comparing Water Heaters, A Life Cycle Approach Comparing Tank and Tankless Water Heaters in California

    Full text link
    Residential water heating is a large source of energy use in California homes. This project took a life cycle approach to comparing tank and tankless water heaters in Northern and Southern California. Information about the life cycle phases was calculated using the European Union�s Methodology study for EcoDesign of Energy-using Products (MEEUP) and the National Renewable Energy Laboratory�s Life Cycle Inventory (NREL LCI) database. In a unit-to-unit comparison, it was found that tankless water heaters would lessen impacts of water heating by reducing annual energy use by 2800 MJ/year (16% compared to tank), and reducing global warming emissions by 175 kg CO2 eqv./year (18% reduction). Overall, the production and combustion of natural gas in the use phase had the largest impact. Total waste, VOCs, PAHs, particulate matter, and heavy-metals-to-air categories were also affected relatively strongly by manufacturing processes. It was estimated that tankless water heater users would have to use 10 more gallons of hot water a day (an increased usage of approximately 20%) to have the same impact as tank water heaters. The project results suggest that if a higher percentage of Californians used tankless water heaters, environmental impacts caused by water heating would be smaller

    Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    Get PDF
    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for about 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ

    Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics - A review

    Get PDF
    As one quarter of global energy use serves the production of materials, the more efficient use of these materials presents a significant opportunity for the mitigation of greenhouse gas (GHG) emissions. With the renewed interest of policy makers in the circular economy, material efficiency (ME) strategies such as light-weighting and downsizing of and lifetime extension for products, reuse and recycling of materials, and appropriate material choice are being promoted. Yet, the emissions savings from ME remain poorly understood, owing in part to the multitude of material uses and diversity of circumstances and in part to a lack of analytical effort. We have reviewed emissions reductions from ME strategies applied to buildings, cars, and electronics. We find that there can be a systematic trade-off between material use in the production of buildings, vehicles, and appliances and energy use in their operation, requiring a careful life cycle assessment of ME strategies. We find that the largest potential emission reductions quantified in the literature result from more intensive use of and lifetime extension for buildings and the light-weighting and reduced size of vehicles. Replacing metals and concrete with timber in construction can result in significant GHG benefits, but trade-offs and limitations to the potential supply of timber need to be recognized. Repair and remanufacturing of products can also result in emission reductions, which have been quantified only on a case-by-case basis and are difficult to generalize. The recovery of steel, aluminum, and copper from building demolition waste and the end-of-life vehicles and appliances already results in the recycling of base metals, which achieves significant emission reductions. Higher collection rates, sorting efficiencies, and the alloy-specific sorting of metals to preserve the function of alloying elements while avoiding the contamination of base metals are important steps to further reduce emissions
    • …
    corecore