44 research outputs found
NaCl-dependent formation of the highly crystalline phase in sufficiently hydrated dimyristoylphosphatidylglycerol bilayers
We investigated the low-temperature phase behavior of dimyristoylphosphatidylglycerol (DMPG) bilayers in the presence of high concentration of NaCl (≥100 mM). Differential scanning calorimetry showed that the highly crystalline (HC) phase grew after an initial delay period when DMPG bilayers were sufficiently hydrated and incubated at 1˚C in the presence of more than 100 mM NaCl. The HC phase formation reached a plateau, the level of which depended on NaCl concentration; all the lipids were unable to be in the HC phase at the plateau stage without a quite high concentration of NaCl. Since electron microscopic observations suggested that the HC phase formed coexists with the precursor phases in a closed vesicle, elastic constrain and/or shortage of free sodium ions in the inside of the closed vesicle may prevent the complete transition into the HC phase
Uncommon co-localization of pituitary adenoma and parasellar cavernous angioma
We encountered a 49-year-old female presenting with left oculomotor palsy who was found to be co-localized cavernous sinus cavernous angioma (CA) and pituitary adenoma. Although CA originated from parasellar regions are not so rare, on neuroimaging studies, the characteristics of CA may be difficult to differentiate from those of pituitary adenomas. The co-localization of these two tumors was identified by preoperative dynamic MRI study. As intraoperative histological examination confirmed our preoperative diagnosis, we performed biopsy of the CA only to avoid uncontrollable intraoperative hemorrhage. © 2008 Elsevier Ireland Ltd. All rights reserved
Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs
Sphingomyelin (SM) has been proposed to form cholesterol-dependent raft domains and sphingolipid domains in the plasma membrane (PM). How SM contributes to the formation and function of these domains remains unknown, primarily because of the scarcity of suitable fluorescent SM analogs. We developed new fluorescent SM analogs by conjugating a hydrophilic fluorophore to the SM choline headgroup without eliminating its positive charge, via a hydrophilic nonaethylene glycol linker. The new analogs behaved similarly to the native SM in terms of their partitioning behaviors in artificial liquid order-disorder phase-separated membranes and detergent-resistant PM preparations. Single fluorescent molecule tracking in the live-cell PM revealed that they indirectly interact with each other in cholesterol- and sphingosine backbone–dependent manners, and that, for ∼10–50 ms, they undergo transient colocalization-codiffusion with a glycosylphosphatidylinositol (GPI)-anchored protein, CD59 (in monomers, transient-dimer rafts, and clusters), in CD59-oligomer size–, cholesterol-, and GPI anchoring–dependent manners. These results suggest that SM continually and rapidly exchanges between CD59-associated raft domains and the bulk PM
地震発生帯における深部掘削孔を用いた長期計測
Large earthquakes occur frequently in subduction zones. Most earthquakes are generated in the seismogenic zone, a fairly limited area confined to the shallower regions of the subduction plate boundary. To understand the processes of earthquake generation, it is essential to monitor the physical and mechanical properties of the seismogenic zone over long periods. At present, there are no deep borehole observations of the seismogenic zone more than 3km below seafloor, because it has, until now, been impossible to penetrate to such depths below the sea floor. The Integrated Ocean Drilling Program (IODP), scheduled to begin in 2003, plans to drill boreholes beneath the ocean floor using a multiple-drilling platform operation. The IODP riser-quipped drilling ship (Chikyu) enables the emplacement of boreholes up to 0km beneath the ocean floor, and will provide opportunities to conduct long-term deep borehole observations in the seismogenic zone. Long-term borehole observations in the seismogenic zone are expected to require the development of advanced sampling, monitoring, and recording technology. Here, we discuss the scientific objectives, engineering and technical challenges, and experimental design for a deep borehole, long-term deepborehole monitoring system aimed at understanding the processes of earthquake generation in the seismogenic zone of subduction plate boundaries. We focus specifically on the relationships between environmental conditions in the deep subsurface, details of monitoring and recording, and design and implementation of scientific tools and programs
Inimitable Impacts of Ceramides on Lipid Rafts Formed in Artificial and Natural Cell Membranes
Ceramide is the simplest precursor of sphingolipids and is involved in a variety of biological functions ranging from apoptosis to the immune responses. Although ceramide is a minor constituent of plasma membranes, it drastically increases upon cellular stimulation. However, the mechanistic link between ceramide generation and signal transduction remains unknown. To address this issue, the effect of ceramide on phospholipid membranes has been examined in numerous studies. One of the most remarkable findings of these studies is that ceramide induces the coalescence of membrane domains termed lipid rafts. Thus, it has been hypothesised that ceramide exerts its biological activity through the structural alteration of lipid rafts. In the present article, we first discuss the characteristic hydrogen bond functionality of ceramides. Then, we showed the impact of ceramide on the structures of artificial and cell membranes, including the coalescence of the pre-existing lipid raft into a large patch called a signal platform. Moreover, we proposed a possible structure of the signal platform, in which sphingomyelin/cholesterol-rich and sphingomyelin/ceramide-rich domains coexist. This structure is considered to be beneficial because membrane proteins and their inhibitors are separately compartmentalised in those domains. Considering the fact that ceramide/cholesterol content regulates the miscibility of those two domains in model membranes, the association and dissociation of membrane proteins and their inhibitors might be controlled by the contents of ceramide and cholesterol in the signal platform
Coexistence of two liquid crystalline phases in dihydrosphingomyelin and dioleoylphosphatidylcholine binary mixtures
AbstractRecently, DHSM, a minor constituent in naturally occurring SMs, was indicated to form a raft-like ordered phase more effectively than a naturally occurring form of SM because DHSM has greater potential to induce the intermolecular hydrogen bond. In order to examine the influence of the DHSM-induced hydrogen bond on the phase segregation, the thermal phase behavior of stearoyl-DHSM/DOPC binary bilayers was examined using calorimetry and fluorescence observation and compared with that of SSM/DOPC binary bilayers. Results revealed that the DHSM/DOPC bilayers undergo phase segregation between two Lα phases within a limited compositional range. On the other hand, apparent phase separation was not observed above main transition temperature in SSM/DOPC mixtures. Our monolayer measurements showed that the lipid packing of DHSM is less perturbed than that of SSM by the addition of small amount of DOPC, indicating a stronger hydrogen bond between DHSM molecules. Therefore, in DHSM/DOPC binary bilayers, DHSM molecules may locally accumulate to form a DHSM-rich domain due to a DHSM-induced hydrogen bond. On the other hand, excess accumulation of DHSM should be prevented because the difference in the curvature between DHSM and DOPC assemblies causes elastic constraint at the domain boundary between the DHSM-rich and DOPC-rich domains. Competition between the energetic advantages provided by formation of the hydrogen bond and the energetic disadvantage conferred by elastic constraints likely results in Lα/Lα phase separation within a limited compositional range