36 research outputs found

    Photon-energy dissipation caused by an external electric circuit in "virtual" photo-excitation processes

    Get PDF
    We consider generation of an electrical pulse by an optical pulse in the ``virtual excitation'' regime. The electronic system, which is any electro-optic material including a quantum well structure biased by a dc electric field, is assumed to be coupled to an external circuit. It is found that the photon frequency is subject to an extra red shift in addition to the usual self-phase modulation, whereas the photon number is conserved. The Joule energy consumed in the external circuit is supplied only from the extra red shift.Comment: 4 pages, 1 fugur

    Indirectly Pumped 3.7 THz InGaAs/InAlAs Quantum-Cascade Lasers Grown by Metal-Organic Vapor-Phase Epitaxy

    Get PDF
    Device-performances of 3.7 THz indirect-pumping quantum- cascade lasers are demonstrated in an InGaAs/InAlAs material system grown by metal-organic vapor-phase epitaxy. The lasers show a low threshold-current-density of ~420 A/cm2 and a peak output power of ~8 mW at 7 K, no sign of parasitic currents with recourse to well-designed coupled-well injectors in the indirect pump scheme, and a maximum operating temperature of Tmax~100 K. The observed roll-over of output intensities in current ranges below maximum currents and limitation of Tmax are discussed with a model for electron-gas heating in injectors. Possible ways toward elevation of Tmax are suggested

    Semiconductor Lasers With Integrated Plasmonic Polarizers

    Get PDF
    The authors reported the plasmonic control of semiconductor laser polarization by means of metallic gratings and subwavelength apertures patterned on the laser emission facet. An integrated plasmonic polarizer can project the polarization of a semiconductor laser onto other directions. By designing a facet with two orthogonal grating-aperture structures, a polarization state consisting of a superposition of a linearly and right-circularly polarized light was demonstrated in a quantum cascade laser; a first step toward a circularly polarized laser.Engineering and Applied Science

    An Analysis of Mutual Communication between Qubits by Capacitive Coupling

    Get PDF
    A behavior of a two qubit system coupled by the electric capacitance has been studied quantum mechanically. We found that the interaction is essentially the same as the one for the dipole-dipole interaction; i.e., qubit-qubit coupling of the NMR quantum gate. Therefore a quantum gate could be constructed by the same operation sequence for the NMR device if the coupling is small enough. The result gives an information to the effort of development of the devices assuming capacitive coupling between qubits.Comment: 8 pages, 2 figures Revised and Replaced on Apr. 8 200
    corecore