13 research outputs found

    Establishment of testis-specific SOX9 activation requires high-glucose metabolism in mouse sex differentiation

    Get PDF
    AbstractIn mouse sex differentiation, SRY promotes Sertoli cell differentiation via SOX9 action, resulting in testis formation. SRY/SOX9 also initiates various testis-specific morphogenic events including glycogenesis in pre-Sertoli cells, suggesting the importance of glucose storage for certain SRY/SOX9-downstream events in gonadal sex determination. However, it remains unclear which cell types and what molecular/cellular events require sex-dimorphic high-energy metabolic rate. Here we show that the establishment of SOX9 activation itself is a metabolically active process with sex-dimorphic high-energy requirements in gonadal sex differentiation. The glucose-deprivation and metabolic rescue experiments using genital ridge cultures of the XY/XX-wildtype and XX/Sry transgenic embryos demonstrated that, among the various somatic cell types, pre-Sertoli cells are the most sensitive to glucose starvation despite the differences between XX/Sry and XY genotypes. Moreover, our data showed that, in developing pre-Sertoli cells, the high-glucose metabolic state is required for the establishment of SOX9 expression through an ECM (extracellular matrix)-mediated feed-forward pathway. In contrast, the expression of SRY, SF1/Ad4Bp, GATA4 and WT1, as well as initiation of early SOX9 expression, is properly maintained in the glucose-deprived condition. Therefore, our results imply the metabolic importance of the high-glucose condition for the establishment of SOX9 activation in testis differentiation

    A critical time window of Sry action in gonadal sex determination in mice

    Get PDF
    In mammals, the Y-linked sex-determining gene Sry cell-autonomously promotes Sertoli cell differentiation from bipotential supporting cell precursors through SRY-box containing gene 9 (Sox9), leading to testis formation. Without Sry action, the supporting cells differentiate into granulosa cells, resulting in ovarian development. However, how Sry acts spatiotemporally to switch supporting cells from the female to the male pathway is poorly understood. We created a novel transgenic mouse line bearing an inducible Sry transgene under the control of the Hsp70.3 promoter. Analysis of these mice demonstrated that the ability of Sry to induce testis development is limited to approximately 11.0-11.25 dpc, corresponding to a time window of only 6 hours after the normal onset of Sry expression in XY gonads. If Sry was activated after 11.3 dpc, Sox9 activation was not maintained, resulting in ovarian development. This time window is delimited by the ability to engage the high-FGF9/low-WNT4 signaling states required for Sertoli cell establishment and cord organization. Our results indicate the overarching importance of Sry action in the initial 6-hour phase for the female-to-male switching of FGF9/WNT4 signaling patterns

    Prevention of hypoglycemia by intermittent-scanning continuous glucose monitoring device combined with structured education in patients with type 1 diabetes mellitus : A randomized, crossover trial

    Get PDF
    Aims: We conducted a randomized, crossover trial to compare intermittent-scanning continuous glucose monitoring (isCGM) device with structured education (Intervention) to self-monitoring of blood glucose (SMBG) (Control) in the reduction of time below range. Methods: This crossover trial involved 104 adults with type 1 diabetes mellitus (T1DM) using multiple daily injections. Participants were randomly allocated to either sequence Intervention/Control or sequence Control/Intervention. During the Intervention period which lasted 84 days, participants used the first-generation FreeStyle Libre (Abbott Diabetes Care, Alameda, CA, USA) and received structured education on how to prevent hypoglycemia based on the trend arrow and by frequent sensor scanning (≥10 times a day). Confirmatory SMBG was conducted before dosing insulin. The Control period lasted 84 days. The primary endpoint was the decrease in the time below range (TBR; <70 mg/dL). Results: The time below range was significantly reduced in the Intervention arm compared to the Control arm (2.42 ± 1.68 h/day [10.1 %±7.0 %] vs 3.10 ± 2.28 h/day [12.9 %±9.5 %], P = 0.012). The ratio of high-risk participants with low blood glucose index >5 was significantly reduced (8.6 % vs 23.7 %, P < 0.001). Conclusions: The use of isCGM combined with structured education significantly reduced the time below range in patients with T1DM

    Genetic Analysis of Repair and Damage Tolerance Mechanisms for DNA-Protein Cross-Links in Escherichia coli▿ §

    No full text
    DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. We have recently shown that nucleotide excision repair (NER) and RecBCD-dependent homologous recombination (HR) collaboratively alleviate the lethal effect of DPCs in Escherichia coli. In this study, to gain further insight into the damage-processing mechanism for DPCs, we assessed the sensitivities of a panel of repair-deficient E. coli mutants to DPC-inducing agents, including formaldehyde (FA) and 5-azacytidine (azaC). We show here that the damage tolerance mechanism involving HR and subsequent replication restart (RR) provides the most effective means of cell survival against DPCs. Translesion synthesis does not serve as an alternative damage tolerance mechanism for DPCs in cell survival. Elimination of DPCs from the genome relies primarily on NER, which provides a second and moderately effective means of cell survival against DPCs. Interestingly, Cho rather than UvrC seems to be an effective nuclease for the NER of DPCs. Together with the genes responsible for HR, RR, and NER, the mutation of genes involved in several aspects of DNA repair and transactions, such as recQ, xth nfo, dksA, and topA, rendered cells slightly but significantly sensitive to FA but not azaC, possibly reflecting the complexity of DPCs or cryptic lesions induced by FA. UvrD may have an additional role outside NER, since the uvrD mutation conferred a slight azaC sensitivity on cells. Finally, DNA glycosylases mitigate azaC toxicity, independently of the repair of DPCs, presumably by removing 5-azacytosine or its degradation product from the chromosome

    Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a

    Get PDF
    Developmental gene expression is defined through cross-talk between the function of transcription factors and epigenetic status, including histone modification. Although several transcription factors play crucial roles in mammalian sex determination, how epigenetic regulation contributes to this process remains unknown. We observed male-to-female sex reversal in mice lacking the H3K9 demethylase Jmjd1a and found that Jmjd1a regulates expression of the mammalian Y chromosome sex-determining gene Sry. Jmjd1a directly and positively controls Sry expression by regulating H3K9me2 marks. These studies reveal a pivotal role of histone demethylation in mammalian sex determination
    corecore