253 research outputs found

    3テスラ磁気共鳴画像を用いた閉経女性における海馬萎縮速度の増加

    Get PDF
    取得学位 : 博士(保健学), 学位授与番号 : 医博甲第2251 号, 学位授与年月日 : 平成24年3月22日, 学位授与大学 : 金沢大学, 審査結果の報告日 : 平成24年2月23

    The Stellar Mass, Star Formation Rate and Dark Matter Halo Properties of LAEs at z2z\sim2

    Get PDF
    We present average stellar population properties and dark matter halo masses of z2z \sim 2 \lya emitters (LAEs) from SED fitting and clustering analysis, respectively, using \simeq 12501250 objects (NB38725.5NB387\le25.5) in four separate fields of 1\simeq 1 deg2^2 in total. With an average stellar mass of 10.2±1.8×108 M10.2\, \pm\, 1.8\times 10^8\ {\mathrm M_\odot} and star formation rate of 3.4±0.4 M yr13.4\, \pm\, 0.4\ {\mathrm M_\odot}\ {\rm yr^{-1}}, the LAEs lie on an extrapolation of the star-formation main sequence (MS) to low stellar mass. Their effective dark matter halo mass is estimated to be $4.0_{-2.9}^{+5.1} \times 10^{10}\ {\mathrm M_\odot}withaneffectivebiasof with an effective bias of 1.22^{+0.16}_{-0.18}whichislowerthanthatof which is lower than that of z \sim 2LAEs( LAEs (1.8\, \pm\, 0.3),obtainedbyapreviousstudybasedonathreetimessmallersurveyarea,withaprobabilityof), obtained by a previous study based on a three times smaller survey area, with a probability of 96\%. However, the difference in the bias values can be explained if cosmic variance is taken into account. If such a low halo mass implies a low HI gas mass, this result appears to be consistent with the observations of a high \lya escape fraction. With the low halo masses and ongoing star formation, our LAEs have a relatively high stellar-to-halo mass ratio (SHMR) and a high efficiency of converting baryons into stars. The extended Press-Schechter formalism predicts that at z=0ourLAEsaretypicallyembeddedinhaloswithmassessimilartothatoftheLargeMagellanicCloud(LMC);theywillalsohavesimilarSHMRstotheLMC,iftheirSFRsarelargelysuppressedafter our LAEs are typically embedded in halos with masses similar to that of the Large Magellanic Cloud (LMC); they will also have similar SHMRs to the LMC, if their SFRs are largely suppressed after z \sim 2$ as some previous studies have reported for the LMC itself.Comment: 34 pages, 15 figures, 6 tables. Accepted for publication in PAS

    Development of Novel Synthetic Amine Absorbents for CO2 Capture

    Get PDF
    AbstractIn the present paper, we investigated five synthetic amine based absorbents, including three formulated solvents. Aqueous solutions of the amines (mass fraction; 30% for single amine and >30% for blended solvents) were used to evaluate the performance for CO2 capture. Gas scrubbing, vapor-liquid equilibrium (VLE), and reaction calorimetry experiments were conducted in the laboratory to obtain the absorption rate, the amount of CO2 absorbed, cyclic CO2 capacity, and heat of reaction for each absorbent. The results of these absorbents were compared with the conventional absorbent monoethanolamine (MEA). Three high performing synthetic absorbents (IPAE, IPAP and IBAE) were found, and these had lower heats of reaction, higher cyclic capacities, and comparable absorption rates compared with MEA. All formulated absorbents showed excellent cyclic CO2 capacity and keeping moderately good absorption rate and lower heats of absorption. Some blended solvents were already demonstrated with real blast furnace gas at pilot test plants with capacities of 1 ton-CO2/day and 30 ton-CO2/day and showed promising results in terms of reducing absorbent regeneration energy
    corecore