6 research outputs found

    ΠœΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ участі Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ²Π°Π½Π½Ρ– ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… процСсів

    Get PDF
    ДисСртація присвячСна Π²ΠΈΡ€Ρ–ΡˆΠ΅Π½Π½ΡŽ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡ— ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠΈ встановлСння Ρ€ΠΎΠ»Ρ– стСрСотипних Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉ сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ як Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми Π² Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΡŒΠΎΠ²Π°Π½Ρ– Π·Π°Π³Π°Π»ΡŒΠ½Ρ– ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠΈ ΠΎΡ†Ρ–Π½ΠΊΠΈ стану Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Ρ‚Π° Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½Π° Ρ—Ρ— Ρ€ΠΎΠ»ΡŒ Ρƒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу Π² ΠΏΠ°Ρ€Π΅Π½Ρ…Ρ–ΠΌΠ°Ρ‚ΠΎΠ·Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½Π°Ρ… (Π½ΠΈΡ€ΠΊΠΈ, ΠΏΠ΅Ρ‡Ρ–Π½ΠΊΠ°, ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²Π° Π·Π°Π»ΠΎΠ·Π°) Ρ– кістковій Ρ‚ΠΊΠ°Π½ΠΈΠ½Ρ–. Π’ΠΏΠ΅Ρ€ΡˆΠ΅ Π²ΠΈΠ²Ρ‡Π΅Π½Π° Ρ€ΠΎΠ»ΡŒ рСгуляторного ΡˆΠ»ΡΡ…Ρƒ RANK-RANKL-OPG ΠΏΡ€ΠΈ Π΅ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΌΡƒ ΠΌΠΎΠ΄Π΅Π»ΡŽΠ²Π°Π½Π½Ρ– ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ— Π½ΠΈΡ€ΠΎΠΊ, встановлСна ΠΉΠΎΠ³ΠΎ активація Ρ‚Π° Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Π²Π·Π°Ρ”ΠΌΠΎΠ·Π²'язку Π· ΠΏΡ€ΠΎ- Ρ‚Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ·Π°ΠΏΠ°Π»ΡŒΠ½ΠΈΠΌΠΈ Ρ†ΠΈΡ‚ΠΎΠΊΡ–Π½Π°ΠΌΠΈ, Ρƒ Ρ‚ΠΎΠΌΡƒ числі ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½Π° корСляція ΠΌΡ–ΠΆ RANKL Ρ– ΠΏΡ€ΠΎΡ„Ρ–Π±Ρ€ΠΎΡ‚ΠΈΡ‡Π½ΠΈΠΌ TGF-Ξ²1 (r = 0,61). ВиявлСні Π½ΠΎΠ²Ρ– ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π΅Ρ‚ΠΈΡ‡Π½Ρ– ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½Π½Ρ стану кісткової Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ, Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ Ρ„Ρ–Π±Ρ€ΠΎΠ·Ρƒ ΠΏΠ΅Ρ‡Ρ–Π½ΠΊΠΈ Ρ‚Π° ΠΏΡ–Π΄ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎΡ— Π·Π°Π»ΠΎΠ·ΠΈ, ΠΏΠΎΠ²'язані Π·Ρ– зниТСнням Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΡ— активності Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚Ρ–Π². ВстановлСно, Ρ‰ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ гСмостазу Π²ΠΏΠ»ΠΈΠ²Π°ΡŽΡ‚ΡŒ Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†Ρ–ΡŽ ΠΏΡ€ΠΎΠ»Ρ–Ρ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΈΡ… процСсів Ρƒ сполучній Ρ‚ΠΊΠ°Π½ΠΈΠ½Ρ–. ΠœΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ пСрСнСсСння ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π΄Π°Π½ΠΈΡ… Π½Π° ΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌ людини ΡƒΡ‚ΠΎΡ‡Π½ΡŽΠ²Π°Π»Π°ΡΡ Π½Π° ΠΊΠ»Ρ–Π½Ρ–Ρ‡Π½ΠΎΠΌΡƒ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρ–. ВиявлСна Ρ€ΠΎΠ»ΡŒ стану Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Ρƒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΡƒΡΠΊΠ»Π°Π΄Π½Π΅Π½ΡŒ Ρ– Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Ρ–Π² Ρƒ Ρ…Π²ΠΎΡ€ΠΈΡ… Π· Π³Ρ–Π΄Ρ€ΠΎΠ½Π΅Ρ„Ρ€ΠΎΡ‚ΠΈΡ‡Π½ΠΎΡŽ Ρ‚Ρ€Π°Π½ΡΡ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ”ΡŽ Π½ΠΈΡ€ΠΎΠΊ, встановлСна активація рСгуляторного ΡˆΠ»ΡΡ…Ρƒ RANK-RANKL-OPG Ρƒ Ρ…Π²ΠΎΡ€ΠΈΡ… Π½Π° Π³Ρ–Π΄Ρ€ΠΎΠ½Π΅Ρ„Ρ€ΠΎΠ·. Показана взаємодія Ρ€Ρ–Π·Π½ΠΈΡ… ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΡ–Π² рСгуляції Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ ΠΏΡ€ΠΈ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ— ΠΎΡ€Π³Π°Π½Ρ–Π² ΠΏΠ°Π½ΠΊΡ€Π΅Π°Ρ‚ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΡ— Π·ΠΎΠ½ΠΈ. На основі ΠΎΡ†Ρ–Π½ΠΊΠΈ стану Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ прогнозування Ρ…Ρ–Ρ€ΡƒΡ€Π³Ρ–Ρ‡Π½ΠΈΡ… ΡƒΡΠΊΠ»Π°Π΄Π½Π΅Π½ΡŒ Ρ‚Π° Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²Ρ–Π² Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½Π½Ρ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΌΠ΅Ρ‚Π°Π°Π½Π°Π»Ρ–Π· ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Π΄Π°Π½ΠΈΡ…, Π½Π° основі якого Π·Π° допомогою Ρ„Π°ΠΊΡ‚ΠΎΡ€Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ встановлСні основні Π³Ρ€ΡƒΠΏΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² (Ρ„Π°ΠΊΡ‚ΠΎΡ€Ρ–Π²), які Π²Ρ–Π΄ΠΎΠ±Ρ€Π°ΠΆΠ°ΡŽΡ‚ΡŒ основні напрямки ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу, опосСрСдковані Ρ€Π΅Π°ΠΊΡ†Ρ–Ρ”ΡŽ Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ. Π”ΠΎΠΏΠΎΠ²Π½Π΅Π½Ρ– Π½Π°ΡƒΠΊΠΎΠ²Ρ– Π΄Π°Π½Ρ– ΠΏΡ€ΠΎ ΠΌΠ΅Ρ…Π°Π½Ρ–Π·ΠΌΠΈ Ρ…Ρ€ΠΎΠ½Ρ–Π·Π°Ρ†Ρ–Ρ— ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу ΠΏΡ€ΠΈ Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½Π½ΡΡ… Π½ΠΈΡ€ΠΎΠΊ, ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ Π·ΠΌΡ–Π½ΠΈ Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ стану сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎ зафіксовані Π½Π°Π²Ρ–Ρ‚ΡŒ Ρƒ Ρ€Π°Π·Ρ– ΡƒΠΏΠΎΠ²Ρ–Π»ΡŒΠ½Π΅Π½ΠΎΠ³ΠΎ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ процСсу Π² Π½Π΅Π²Π΅Π»ΠΈΠΊΠΎΠΌΡƒ Π·Π° масою ΠΎΡ€Π³Π°Π½Ρ–. Π”ΠΎΠΏΠΎΠ²Π½Π΅Π½Ρ– Π½Π°ΡƒΠΊΠΎΠ²Ρ– Π΄Π°Π½Ρ– ΠΏΡ€ΠΎ Ρ€ΠΎΠ»ΡŒ Ρ‚Π° ΡΡ‚ΡƒΠΏΡ–Π½ΡŒ залучСності ΠΏΠΎΡ€ΡƒΡˆΠ΅Π½ΡŒ рСгуляторної Ρ„ΡƒΠ½ΠΊΡ†Ρ–Ρ— Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Ρƒ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΎΠΊ Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½ΡŒ ΡˆΠ»ΡƒΠ½ΠΊΠΎΠ²ΠΎ-кишкового Ρ‚Ρ€Π°ΠΊΡ‚Ρƒ, Π² Ρ‚ΠΎΠΌΡƒ числі Π΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΡ— Π²ΠΈΡ€Π°Π·ΠΊΠΈ. Показана Ρ€ΠΎΠ»ΡŒ Ρ– значСння зниТСння Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Ρ€Π΅Π·Π΅Ρ€Π²Ρ–Π² Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ для Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ Ρ€ΠΈΠ·ΠΈΠΊΡ–Π² Π·Π°Ρ…Π²ΠΎΡ€ΡŽΠ²Π°Π½ΠΎΡΡ‚Ρ– Π² популяції. Π—Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ†Ρ–Π½ΠΊΠΈ Ρ€ΠΈΠ·ΠΈΠΊΡ–Π² для популяційного Π·Π΄ΠΎΡ€ΠΎΠ²'я насСлСння Π½Π° основі Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Ρ€Π΅Π·Π΅Ρ€Π²Ρ–Π² Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— систСми сполучної Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ.ДиссСртация посвящСна Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ – установлСния Ρ€ΠΎΠ»ΠΈ стСрСотипных Ρ€Π΅Π°ΠΊΡ†ΠΈΠΉ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΊΠ°ΠΊ физиологичСской систСмы Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ патологичСского процСсса. Π˜Π·ΡƒΡ‡Π°Π»ΠΈΡΡŒ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ рСгуляции Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ² ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… молСкулярных Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² Π½Π° модСлях ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΠ°Ρ‚ΠΎΠ·Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠ² (ΠΏΠΎΡ‡ΠΊΠΈ, ΠΏΠ΅Ρ‡Π΅Π½ΡŒ, подТСлудочная ΠΆΠ΅Π»Π΅Π·Π°) ΠΈ костной Ρ‚ΠΊΠ°Π½ΠΈ Π² экспСримСнтС. Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ пСрСноса ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… Π½Π° ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΡƒΡ‚ΠΎΡ‡Π½ΡΠ»Π°ΡΡŒ Π½Π° клиничСском ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠΎΡ‡Π΅ΠΊ Π½Π°Ρ€ΡƒΡˆΠ°ΡŽΡ‚ΡΡ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ рСгуляции ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²Π»ΡΡŽΡ‚ΡΡ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½Π°ΠΌΠΈ, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ ΡƒΡ€ΠΎΠ²Π½ΠΈ Π°Π΄ΠΈΠΏΠΎΠΊΠΈΠ½ΠΎΠ², активируСтся рСгуляторноС Π·Π²Π΅Π½ΠΎ костной Ρ‚ΠΊΠ°Π½ΠΈ – ΠΏΡƒΡ‚ΡŒ RANKRANKL-OPG, ΠΈΠΌΠ΅Π΅Ρ‚ мСсто ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ коррСляция ΠΌΠ΅ΠΆΠ΄Ρƒ RANKL ΠΈ висфатином (r = 0,48), профибротичСским TGF-Ξ²1 ΠΈ Π°Π΄ΠΈΠΏΠΎΠ½Π΅ΠΊΡ‚ΠΈΠ½ΠΎΠΌ (r = 0,47). ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΏΠ°Π½ΠΊΡ€Π΅Π°Ρ‚ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ ΠΈ Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ дСструктивно-дистрофичСских ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹Ρ… Π² ΠΏΠ΅Ρ‡Π΅Π½ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°ΡŽΡ‚ΡΡ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ экскрСции оксипролина с ΠΌΠΎΡ‡ΠΎΠΉ Π·Π° счСт связанной Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ. ΠΠ°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Π²Ρ‹Ρ…ΠΎΠ΄ патологичСского процСсса Π½Π° систСмный ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ опрСдСляСтся расстройством взаимодСйствия ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ с Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚Π°ΠΌΠΈ. ΠœΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌ влияния рСализуСтся Ρ‡Π΅Ρ€Π΅Π· систСму Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ тСсныС коррСляционныС связи с Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚Π°Ρ€Π½ΠΎΠ³ΠΎ Π·Π²Π΅Π½Π° гСмостаза. ΠŸΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠΉ состояния костной Ρ‚ΠΊΠ°Π½ΠΈ, хроничСской ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΏΠ°Π½ΠΊΡ€Π΅Π°Ρ‚ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ ΠΈ Ρ„ΠΈΠ±Ρ€ΠΎΠ·Π° ΠΏΠ΅Ρ‡Π΅Π½ΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ гСмостаза Π²Π»ΠΈΡΡŽΡ‚ Π½Π° Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… процСссов Π² ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, Ρ‡Ρ‚ΠΎ проявляСтся сниТСниСм Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ². Π’ Π³Ρ€ΡƒΠΏΠΏΠ΅ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с Π³ΠΈΠ΄Ρ€ΠΎΠ½Π΅Ρ„Ρ€ΠΎΠ·ΠΎΠΌ установлСна активация рСгуляторного ΠΏΡƒΡ‚ΠΈ RANK-RANKL-OPG, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² рСгулирования Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Основой этого процСсса являСтся дисбаланс Π² систСмС Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² – IL-1RA, IL-17 ΠΈ висфатина, Π° Ρ‚Π°ΠΊΠΆΠ΅ дисбаланс (ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ коррСляция) ΠΌΠ΅ΠΆΠ΄Ρƒ уровнями TGF-Ξ²1 ΠΈ Π°Π΄ΠΈΠΏΠΎΠ½Π΅ΠΊΡ‚ΠΈΠ½Π° (r = - 0,29). Π£ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с обструктивной ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ΠΏΠ°Π½ΠΊΡ€Π΅Π°Ρ‚ΠΎΠ΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ Π·ΠΎΠ½Ρ‹ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΈ Ρ‚ΡΠΆΠ΅ΡΡ‚ΡŒ послСопСрационных ослоТнСний зависят ΠΎΡ‚ стСпСни выраТСнности исходного дисбаланса Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ профиля, Π² Ρ‚ΠΎΠΌ числС сниТСния уровня ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹. Π Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ обструкции Π½Π° Ρ„ΠΎΠ½Π΅ хроничСских Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ этой области ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ появлСниСм Π² ΠΊΡ€ΠΎΠ²ΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ Π°Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌ Ρ„ΠΎΡ€ΠΌΠ°ΠΌ ΠΊΠΎΠ»Π»Π°Π³Π΅Π½Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ вСсти ΠΊ Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡŽ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ Π°ΡƒΡ‚ΠΎΠΈΠΌΠΌΡƒΠ½Π½Ρ‹Ρ… ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ. На основС Π°Π½Π°Π»ΠΈΠ·Π° коррСляционных связСй ΠΈ ΠΌΠ΅Ρ‚Π°Π°Π½Π°Π»ΠΈΠ·Π° Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ Ρ‚Ρ€ΠΈ Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΎΡ‚Ρ€Π°ΠΆΠ°ΡŽΡ‰ΠΈΡ… стСрСотипныС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹ рСгуляции физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π“Ρ€ΡƒΠΏΠΏΠ° 1 – соотвСтствуСт ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π² Ρ†Π΅Π»ΠΎΠΌ. Π‘Ρ€Ρ‹Π² этих Π°Π΄Π°ΠΏΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π²Π΅Π΄Π΅Ρ‚ ΠΊ Ρ…Ρ€ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ патологичСского процСсса ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ риска развития ослоТнСний ΠΈ Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²ΠΎΠ². К Π½Π΅ΠΉ относятся ΡƒΡ€ΠΎΠ²Π½ΠΈ висфатина, IL-4, IL-6, TGF-Ξ²1, масса ΠΈ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ кости, ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€Π° 10 мкмоль/Π», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ основными молСкулярными посрСдниками срыва СстСствСнного тСчСния Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ. Π“Ρ€ΡƒΠΏΠΏΠ° 2 – соотвСтствуСт компСнсаторным ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ°ΠΌ, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌ Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡ€ΠΈ достаточном ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСских Ρ€Π΅Π·Π΅Ρ€Π²ΠΎΠ², ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π»ΠΎΠΊΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½ΠΎ, Π° Π½Π° систСмном ΡƒΡ€ΠΎΠ²Π½Π΅ – компСнсировано. Π’ Π½Π΅Π΅ входят: ΡƒΡ€ΠΎΠ²Π½ΠΈ IL-1, IL-1RA, RANKL, ΠΊΠ°Π»ΡŒΡ†ΠΈΡ‚ΠΎΠ½ΠΈΠ½Π° ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΏΡ€ΠΈ концСнтрациях ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€Π° 2,5 ΠΈ 10 мкмоль/Π». ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ Π³Ρ€ΡƒΠΏΠΏΡ‹ 2 ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π·Π½Π°Ρ‡ΠΈΠΌΡ‹ΠΌΠΈ критСриями для ΠΎΡ†Π΅Π½ΠΊΠΈ сниТСния риска развития ослоТнСний Π² Ρ…ΠΎΠ΄Π΅ ΠΌΠΎΠ½ΠΈΡ‚ΠΎΡ€ΠΈΠ½Π³Π° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ. Π“Ρ€ΡƒΠΏΠΏΠ° 3 – соотвСтствуСт Ρ€Π΅Π·ΠΊΠΎΠΉ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΎΠ±ΠΌΠ΅Π½Π½Ρ‹Ρ… процСссов Π½Π° ΡƒΡ€ΠΎΠ²Π½Π΅ физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… задСйствовано Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²ΠΎ ΠΏΡƒΡ‚Π΅ΠΉ рСгулирования, со смСшСниСм Π² сторону прСобладания синтСза Π½Π°Π΄ распадом. Π“Ρ€ΡƒΠΏΠΏΠ° 3 ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΡΠ΅Ρ‚ ΡƒΡ€ΠΎΠ²Π½ΠΈ IL-17, OPG, RANKL, Π°Π΄ΠΈΠΏΠΎΠ½Π΅ΠΊΡ‚ΠΈΠ½Π°, ΠΏΠ°Ρ€Π°Ρ‚ΠΈΡ€Π΅ΠΎΠΈΠ΄Π½ΠΎΠ³ΠΎ Π³ΠΎΡ€ΠΌΠΎΠ½Π°, всСх Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ оксипролина ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π°Π³Ρ€Π΅Π³Π°Ρ†ΠΈΠΈ Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ² ΠΏΡ€ΠΈ концСнтрациях ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΎΡ€Π° 2,5 ΠΈ 5 мкмоль/Π». ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ этой Π³Ρ€ΡƒΠΏΠΏΡ‹ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ для ΠΎΡ†Π΅Π½ΠΊΠΈ вовлСчСнности физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π² патологичСский процСсс Π½Π° Ρ€Π°Π½Π½ΠΈΡ… стадиях Π΅Π³ΠΎ развития, Π²ΠΊΠ»ΡŽΡ‡Π°Ρ донозологичСскиС состояния. ΠŸΡ€ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΌΠ°Ρ… поврСТдСния ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ заболСвания выявляСтся Π²ΠΎΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ патологичСского процСсса физиологичСской систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ Π² Ρ†Π΅Π»ΠΎΠΌ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΅Π΅ рСакция наряду с рСакциями Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΡ€Π³Π°Π½ΠΎΠ² ΠΈ систСм ΠΏΡ€ΠΈ воспалСнии являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² синдрома систСмного Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° (SIRS). Π’ зависимости ΠΎΡ‚ рСактивности ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ° ΠΈ особСнностСй поврСТдСния измСняСтся Ρ…ΠΎΠ΄ процСсса ΠΈ ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ вовлСчСния систСмы ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ, Ρ‡Ρ‚ΠΎ являСтся Π²Π°ΠΆΠ½Ρ‹ΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ Ρ…Ρ€ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈ риска рСцидивирования. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ стСпСни вовлСчСния ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ ΠΈ диагностичСская Ρ†Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Π΅Ρ‘ ΠΎΠ±ΠΌΠ΅Π½Π° (оксипролина ΠΈ Π³Π»ΠΈΠΊΠΎΠ·Π°ΠΌΠΈΠ½ΠΎΠ³Π»ΠΈΠΊΠ°Π½ΠΎΠ²) для Ρ€Π°Π½Π½Π΅ΠΉ диагностики нСфросклСроза Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… хроничСским ΠΏΠΈΠ΅Π»ΠΎΠ½Π΅Ρ„Ρ€ΠΈΡ‚ΠΎΠΌ, Ρ€Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ остСодистрофии Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… с хроничСской ΠΏΠΎΡ‡Π΅Ρ‡Π½ΠΎΠΉ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ, патологичСских процСссов Ρ€Π°Π·Π½ΠΎΠΉ интСнсивности Π² ΠΆΠ΅Π»ΡƒΠ΄ΠΊΠ΅; Ρ€ΠΎΠ»ΡŒ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠ΅Π΄ΠΈΠ°Ρ‚ΠΎΡ€ΠΎΠ² Π² ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠ΅ Ρ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈΠ²Π½ΠΎΠΉ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ Ρƒ подростков с Π΄ΡƒΠΎΠ΄Π΅Π½Π°Π»ΡŒΠ½ΠΎΠΉ язвой, Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ с ΠΊΠ°Ρ€Π΄ΠΈΠΎΠΏΠ°Ρ‚ΠΈΠ΅ΠΉ ΠΈ остСопСниСй Π½Π° Ρ„ΠΎΠ½Π΅ Π½Π΅Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ дисплазии ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΊΠ°Π½ΠΈ. Π”ΠΎΠΊΠ°Π·Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ использования оксипролина, Π³Π»ΠΈΠΊΠΎΠ·Π°ΠΌΠΈΠ½ΠΎΠ³Π»ΠΈΠΊΠ°Π½ΠΎΠ² ΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» ΠΊ Π°Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹ΠΌ Ρ„ΠΎΡ€ΠΌΠ°ΠΌ ΠΊΠΎΠ»Π»Π°Π³Π΅Π½Π° Π² качСствС молСкулярных ΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² для диагностики донозологичСских состояний ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ популяционного Π·Π΄ΠΎΡ€ΠΎΠ²ΡŒΡ.Dissertation is devoted to solving the urgent problem of establishing the role of the stereotypical reactions of connective tissue as a physiological system in the development of the pathological processes. General principles for the assessment of the physiological system of connective tissue are formulated, and its role in the development of the pathological processes in the parenchymatous organs (kidney, liver, pancreas) and bone is determined. We first studied the role of regulatory path RANK-RANKL-OPG in experimental modeling of renal diseases, its activation and the relationship with pro- and anti-inflammatory cytokines, including a positive correlation between RANKL and profibrogenic TGF-Ξ²1 (r = 0,61). New pathogenetic mechanisms of disturbances of condition of bone tissue are identified and development of fibrosis of the liver and pancreas, associated with a decrease in the functional activity of platelets is made. It is established that the hemostasis mechanisms influence the activation of proliferative processes in the connective tissue. Possibility of transferring the data on the person was specified on the clinical material. Role of the state of the physiological system of connective tissue in the development of complications and recurrences in patients with hydronephrotic transformation of the kidneys is detected; activation regulatory path RANKRANKL-OPG in patients with hydronephrosis is established. Interrelation of the various mechanisms of regulation of the physiological system of connective tissue in the development of pathology of the pancreatoduodenal zones’ organs is shown. Based on the assessment of the physiological system of connective tissue the methods for predicting surgical complications and recurrence of the disease are proposed. Conducted meta-analysis of the obtained data, on the basis of which with the help of factor analysis, the main groups of indicators (factors) are established, which reflect the main directions of the pathological process, mediated reactions in physiological system of the connective tissue. Augmented scientific data on the mechanisms of chronization of the pathological process in diseases of the kidneys is supplemented; it is shown that changes of the functional state of the connective tissue can be quantitatively recorded even in the case of a sluggish pathological process in the small mass organ. Augmented scientific data on the role and degree of involvement of the regulatory function damages of the physiological system of connective tissue in the development of diseases of the gastrointestinal tract, including duodenal ulcer is supplemented. Role and significance of the decline in physiological reserves of the physiological system of connective tissue to increase the risk of morbidity in the population is shown. Method of risk assessment for population health based on the analysis of physiological reserves of the physiological system of the connective tissue is proposed

    Visualization and Quantitative Analysis of G Protein-Coupled Receptorβˆ’Ξ²-Arrestin Interaction in Single Cells and Specific Organs of Living Mice Using Split Luciferase Complementation

    Full text link
    Methods used to assess the efficacy of potentially therapeutic reagents for G protein-coupled receptors (GPCRs) have been developed. Previously, we demonstrated sensitive detection of the interaction of GPCRs and Ξ²-arrestin2 (ARRB2) using 96-well microtiter plates and a bioluminescence microscope based on split click beetle luciferase complementation. Herein, using firefly luciferase emitting longer wavelength light, we demonstrate quantitative analysis of the interaction of Ξ²2-adrenergic receptor (ADRB2), a kind of GPCR, and ARRB2 in a 96-well plate assay with single-cell imaging. Additionally, we showed bioluminescence <i>in vivo</i> imaging of the ADRB2–ARRB2 interaction in two systems: cell implantation and hydrodynamic tail vein (HTV) methods. Specifically, in the HTV method, the luminescence signal from the liver upon stimulation of an agonist for ADRB2 was obtained in the intact systems of mice. The results demonstrate that this method enables noninvasive screening of the efficacy of chemicals at the specific organ in <i>in vivo</i> testing. This <i>in vivo</i> system can contribute to effective evaluation in pharmacokinetics and pharmacodynamics and expedite the development of new drugs for GPCRs

    Diurnal Variations in Partitioning of Atmospheric Glyoxal and Methylglyoxal between Gas and Particles at the Ground Level and in the Free Troposphere

    Full text link
    This work presents diurnal variations of gas- and particle-phase dicarbonyls (glyoxal (Gly) and methylglyoxal (Mgly)) in the atmosphere, which are important compounds that contribute to the formation and growth of atmospheric particulate matter. To obtain variations in partitioning, continuous collection of gaseous dicarbonyls was performed using a parallel plate wet denuder, and at the same time, the dicarbonyls in particle were collected using a spray-type particle collector downstream. Hourly samples were analyzed by high performance liquid chromatography–electrospray ionization–tandem mass spectrometry. This method is advantageous to monitor the gaseous and particulate carbonyls separately without loss during sampling. Sampling was performed in summer and winter in a midsize city (Kumamoto, Japan). The concentrations of the dicarbonyls increased in the summer daytime, which suggests that they are mostly formed by secondary production in the local atmosphere. The dicarbonyls and formaldehyde (HCHO) were found in both gas and particle phases, and partitioning to the particle phase was highest for Gly, followed by Mgly and HCHO. It was observed that the compounds moved to the particle phase in the midnight and early morning hours according to the growth of hygroscopic aerosols in summer. The particle/gas ratio also increased in the presence of high PM<sub>2.5</sub>, which is transported from the Chinese Continent in winter. The dicarbonyls were also observed on Mt. Fuji (3776 m) in the free troposphere. From back trajectory data and information on volatile organic compounds, they were most likely produced from relatively long-lifetime organic compounds from the Chinese Continent and biogenic volatile organic compounds emitted in the Japan Alps mountain range. Higher particle/gas ratios at the Mt. Fuji station indicate that low temperatures and high humidity precede the partition. The estimated effective Henry’s law constants for the dicarbonyls, 10<sup>8</sup> order in mol/kgH<sub>2</sub>O/atm for summer data, were much higher than those for ideal liquid/vapor equilibrium but close to reported results obtained by chamber experiments. In the proposed method, oligomers in particle were also counted as the compounds. The dicarbonyl compounds existed up to submolar levels in real atmospheric aerosols, which suggests they undergo further reactions in the particle phase

    DataSheet_1_Association of high disease activity and serum IL-6 levels with the incidence of inflammatory major organ events in Behçet disease: a prospective registry study.docx

    Full text link
    BackgroundLittle is known about the relationship between the disease activity of BehΓ§et disease (BD) and the incidence of inflammatory major organ events.ObjectivesIn this prospective registry study, we investigated the association between the BehΓ§et Disease Current Activity Form (BDCAF) and incidence of inflammatory major organ events, defined as the inflammation of the ocular, central nervous, intestinal, and vascular systems in BD.MethodsWe enrolled participants from Japanese multicenter prospective cohorts. The BDCAF was evaluated annually. BD-related symptoms, including inflammatory major organ events, were monitored. The association between BDCAF and inflammatory major organ events was analyzed by time-to-event analysis. An unsupervised clustering of the participants’ BDCAF, therapeutic agents, and multiple serum cytokines was also performed to examine their association with inflammatory major organ events.ResultsA total of 260 patients were included. The patients had a median BDCAF score of 2 [Interquartile range, 1-3] at the enrolment and remained disease active at 1- and 2-year follow-ups, indicating residual disease activity in BD. Patients with a BDCAF score of 0 had a longer inflammatory major organ event-free survival at 52 weeks than those with a score of 1 or higher (p=2.2 x 10-4). Clustering analysis revealed that patients who did not achieve remission despite treatment with tumor necrosis factor inhibitors had high serum inflammatory cytokine levels and incidences of inflammatory major organ events. Among the elevated cytokines, IL-6 was associated with inflammatory major organ events.ConclusionThis study suggests that treatment strategies targeting overall disease activity and monitoring residual serum IL-6 may help prevent inflammatory major organ events in BD.</p

    Allelic association results for D2S0276i and nine SNPs in the <i>COL4A4</i> and <i>RHBDD1</i> gene regions.

    Full text link
    <p>1, major allele; 2, minor allele; OR, odds ratio; SNP, single nucleotide polymorphism.</p><p>Position is distance from short arm telomere. P values were calculated by Ο‡<sup>2</sup> test 2Γ—2 contingency table. We corrected <i>P</i> values (<i>P</i>c) of D2S0276i and 5 SNPs in the combined stage for multiple testing by Bonferroni's method and Haploview program using 10,000 permutations, respectively.</p
    corecore