86 research outputs found

    Nonstop Lose-Less Data Acquisition and Storing Method for Plasma Motion Images

    Get PDF
    Plasma diagnostic data analysis often requires the original raw data as they are, in other words, at the same frame rate and resolution of the CCD camera sensor. As a non-interlace VGA camera typically generates over 70 MB/s video stream, usual frame grabber cards apply the lossy compression encoder, such as mpeg-1/-2 or mpeg-4, to drastically lessen the bit rate. In this study, a new approach, which makes it possible to acquire and store such the wideband video stream without any quality reduction, has been successfully achieved. Simultaneously, the real-time video streaming is even possible at the original frame rate. For minimising the exclusive access time in every data storing, it has adopted the directory structure to hold every frame files separately, instead of one long consecutive file. The popular ‘zip’ archive method improves the portability of data files, however, the JPEG-LS image compression is applied inside by replacing its intrinsic deflate/inflate algorithm that has less performances for image data

    Adaptive data migration scheme with facilitator database and multi-tier distributed storage in LHD

    Get PDF
    Recent “data explosion” induces the demand for high flexibility of storage extension and data migration. The data amount of LHD plasma diagnostics has grown 4.6 times bigger than that of three years before. Frequent migration or replication between plenty of distributed storage becomes mandatory, and thus increases the human operational costs. To reduce them computationally, a new adaptive migration scheme has been developed on LHD’s multi-tier distributed storage. So-called the HSM (Hierarchical Storage Management) software usually adopts a low-level cache mechanism or simple watermarks for triggering the data stage-in and out between two storage devices. However, the new scheme can deal with a number of distributed storage by the facilitator database that manages the whole data locations with their access histories and retrieval priorities. Not only the inter-tier migration but also the intra-tier replication and moving are even manageable so that it can be a big help in extending or replacing storage equipment. The access history of each data object is also utilized to optimize the volume size of fast and costly RAID, in addition to a normal cache effect for frequently retrieved data. The new scheme has been verified its effectiveness so that LHD multi-tier distributed storage and other next-generation experiments can obtain such the flexible expandability

    Present Status in the Development of 6 MeV Heavy Ion Beam Probe on LHD

    Get PDF
    In order to measure the potential in Large Helical Device (LHD), we have been developing a heavy ion beam probe (HIBP). For probing beam, gold beam is used, which is accelerated by a tandem accelerator up to the energy of 6 MeV. The experiments for calibration of beam orbit were done, and experimental results were compared with orbit calculations. The experimental results coincided fairly with the calculation results. After the calibration of the beam orbit, the potential in plasma was tried to measure with the HIBP. The experimental data showed positive potential in a neutral beam heating phase on the condition of ne ? 5 × 10^18 m^-3, and the increase of potential was observed when the additional electron cyclotron heating was applied to this plasma. The time constant for this increase was about a few tens ms, which was larger than a theoretical expectation. In the spatial position of sample volume, we might have an ambiguity in this experiment

    Spatial resolved high-energy particle diagnostic system using time-of-flight neutral particle analyzer in Large Helical Device

    Get PDF
    The time-of-flight-type neutral particle analyzer has an ability of horizontal scanning from 40 to 100° of the pitch angle. The information from the spatially resolved energy spectrum gives not only the ion temperature but also the information of the particle confinement and the electric field in plasmas. We have been studying the energy distributions at various magnetic configurations in the neutral beam injection (NBI) plasma. The spatially resolved energy spectra can be observed during long discharges of the NBI plasma by continuous scanning of the neutral particle analyzer. The shape of spectra is almost similar from 44° to 53°. However, the spectra from 55° are strongly varied. They reflect the injection pitch angle of the beam. The pitch angle scanning experiment during the long discharge of NBI plasma has also been made under the reversal of the magnetic field direction. NBI2 becomes counter injected with the reversal. We can easily observe the difference between co- and counter injections of NBI. During the electron cyclotron heating in the low-density plasma for the formation of the internal thermal barrier, large neutral particle increase or decease can be observed. The degree of the increase/decrease depends on the energy and the density. The reason for the variation of the particle flux is that the orbit of the trapped particle changes due to the electric field formed by the strong electron cyclotron heating

    Notch Filter in 70 GHz Range for Microwave Plasma Diagnostics

    Get PDF
    A notch filter for the rejection of stray light from gigahertz range heating sources was developed to protect a vulnerable microwave plasma diagnostic system. As one of the applications, we consider the installation of the notch filter into the receiver of a collective Thomson scattering diagnostic in the Large Helical Device. Experimental observations indicate that two types of notch filters are required for main and spurious mode rejection; they have very narrow, steep shapes to avoid disturbing the diagnostic signal. On the basis of numerically simulated results, notch filters were fabricated, and their performance was evaluated. An attenuation level of 35 dB at 74.746 GHz with a 3 dB bandwidth of 0.49 GHz is achieved by two pairs of resonator cavities. This attenuation is acceptable in our study

    High Energy Particle Measurements during Long Discharge in LHD

    Get PDF
    The spatial resolved energy spectra can be observed during a long discharge of NBI plasma bycontinuously scanning the neutral particle analyzer. In these discharges, the plasmas are initiated by the ECH heating, after that NBI#2 (Co-injection) sustains the plasma during 40-60 seconds. The scanned pitch angle is from 44 degrees to 74 degrees. The injected neutral beam (hydrogen) energy of NBI#2 is only 130 keV because the original ion source polarity is negative. The shape of spectra is almost similar from 44 degrees to 53 degrees. However the spectra from 55 degrees are strongly varied. It reflects the injection pitch angle of the beam according to the simulation (53 degrees ot R* = 3.75 m in simulation). The beam keeps the pitch angle at incidence until the beam energy becomes to the energy, which the pitch angle scattering is occurred by the energy loss due to the electron collision. The low flux region can be observed around 10-15 keV, which is 15 times of the electron temperature. The energy region may be equal to the energy at which the pitch angle scattering is occurred. At the energy, the particle is scattered by the collision with the plasma ions and some of particles may run away from the plasma because they have a possibility to enter the loss cone. According to the simulation, the loss cone can be expected at the 10 keV with the small angular dependence. The depth of the loss cone is deep at the small pitch angle. The hollow in the spectrum may be concluded to be the loss cone as the tendency is almost agreed with the experimental result

    Recent Results from LHD Experiment with Emphasis on Relation to Theory from Experimentalist’s View

    Get PDF
    he Large Helical Device (LHD) has been extending an operational regime of net-current free plasmas towardsthe fusion relevant condition with taking advantage of a net current-free heliotron concept and employing a superconducting coil system. Heating capability has exceeded 10 MW and the central ion and electron temperatureshave reached 7 and 10 keV, respectively. The maximum value of β and pulse length have been extended to 3.2% and 150 s, respectively. Many encouraging physical findings have been obtained. Topics from recent experiments, which should be emphasized from the aspect of theoretical approaches, are reviewed. Those are (1) Prominent features in the inward shifted configuration, i.e., mitigation of an ideal interchange mode in the configuration with magnetic hill, and confinement improvement due to suppression of both anomalous and neoclassical transport, (2) Demonstration ofbifurcation of radial electric field and associated formation of an internal transport barrier, and (3) Dynamics of magnetic islands and clarification of the role of separatrix
    corecore