316 research outputs found

    Partially Composite Dark Matter

    Full text link
    In a class of theories where the Higgs field emerges as a pseudo Nambu-Goldstone boson, it is often assumed that interactions to generate the top Yukawa coupling provide the Higgs potential as well. Such a scenario generically requires a little cancellation in the leading contribution to the Higgs potential, and the electroweak scale is generated by the balance between the leading and the subleading contributions. We, instead, consider the possibility that the contribution from the dark matter particle balances against that from the top quark. The thermal relic of the new particle explains the abundance of dark matter in a consistent region of the parameter space, and the direct detection is found to be promising.Comment: 16 pages, 2 figures, v2: minor changes, references adde

    Natural supersymmetric spectrum in mirage mediation

    Full text link
    Current results of LHC experiments exclude large area of light new particle region, namely natural parameter space, in supersymmetric extension models. One of the possibilities for achieving the correct electroweak symmetry breaking naturally is low scale messenger scenario. Actually, the next-to-minimal supersymmetric standard model with TeV scale mirage mediation realizes the natural electroweak symmetry breaking with various mass spectra. In this paper, we show the possible mass spectrum in the scenario, e.g. degenerate and/or hierarchical mass spectrum, and discuss these features.Comment: 37 pages, 2 figures;v2 minor chang

    Can R-parity violation hide vanilla supersymmetry at the LHC?

    Get PDF
    Current experimental constraints on a large parameter space in supersymmetric models rely on the large missing energy signature. This is usually provided by the lightest neutralino which stability is ensured by the R-parity. However, if the R-parity is violated, the lightest neutralino decays into the standard model particles and the missing energy cut is not efficient anymore. In particular, the UDD type R-parity violation induces the neutralino decay to three quarks which potentially leads to the most difficult signal to be searched at hadron colliders. In this paper, we study the constraints on the R-parity violating supersymmetric model using a same-sign dilepton and a multijet signatures. We show that the gluino and squarks lighter than a TeV are already excluded in constrained minimal supersymmetric standard model with R-parity violation if their masses are approximately equal. We also analyze constraints in a simplified model with R-parity violation. We compare how R-parity violation changes some of the observables typically used to distinguish a supersymmetric signal from standard model backgrounds.Comment: 14 pages, 4 figure
    • …
    corecore