386 research outputs found

    Characterization of muscarinic and P2X receptors in the urothelium and detrusor muscle of the rat bladder

    Get PDF
    AbstractMuscarinic and purinergic (P2X) receptors play critical roles in bladder urothelium under physiological and pathological conditions. Aim of present study was to characterize these receptors in rat bladder urothelium and detrusor muscle using selective radioligands of [N-methyl-3H]scopolamine methyl chloride ([3H]NMS) and αβ-methylene ATP [2,8-3H]tetrasodium salt ([3H]αβ-MeATP). Similar binding parameters for each radioligand were observed in urothelium and detrusor muscle. Pretreatment with N-(2-chloroethyl)-4-piperidinyl diphenylacetate (4-DAMP mustard) mustard revealed co-existence of M2 and M3 receptors, with the number of M2 receptors being larger in the urothelium and detrusor muscle. Intravesical administration of imidafenacin and Dpr-P-4 (N → O) (active metabolite of propiverine) displayed significant binding of muscarinic receptors in the urothelium and detrusor muscle. The treatment with cyclophosphamide (CYP) or resiniferatoxin (RTX) resulted in a significant decrease in maximal number of binding sites (Bmax) for [3H]NMS and/or [3H]αβ-MeATP in the urothelium and detrusor muscle. These results demonstrated that 1) pharmacological characteristics of muscarinic and P2X receptors in rat bladder urothelium were similar to those in the detrusor muscle, 2) that densities of these receptors were significantly altered by pretreatments with CYP and RTX, and 3) that these receptors may be pharmacologically affected by imidafenacin and Dpr-P-4 (N → O) which are excreted in the urine

    Kinetic Analysis and Prediction of Thermal Decomposition Behavior of Tertiary Pyridine Resin in the Nitrate Form

    Get PDF
    AbstractThe thermal decomposition behavior of the tertiary pyridine resin, which was used during the nuclide-separation process in the Advanced Optimization by Recycling Instructive Elements (Advanced ORIENT) cycle, was investigated in its nitrate form (TPR-NO3), in order to determine ways of preventing its runaway reaction. A thermal analysis of TPR-NO3 and an analysis of the gases produced during decomposition were employed for the purpose. In addition, the kinetics parameters were evaluated via a kinetic analysis of the empirical thermal data. Finally, the validity of the reaction model was assessed by comparing the thermal behavior predicted by the estimated reaction model with that determined by the results of a gram-scale heating test performed in our previous study. We found that, when TPR-NO3 was heated, first, nitric acid was removed. Subsequently, TPR-NO3 was oxidized by the removed nitric acid. Under the assumption that it took place an autocatalytic oxidation and nth order thermal decomposition in parallel, the thermogravimetric analysis data could be fitted very well using a nonlinear regression model. The thermal behavior of TPR-NO3 could be predicted by the reaction model determined in this study under conditions where the cooling effect owing to evaporation was ignored. In addition, the maximum temperature and time to maximum rate of a runaway reaction predicted using the determined reaction model gave the result on the side of prudence

    Causes and consequences of stress generation : Longitudinal associations of negative events, aggressive behaviors, rumination, and depressive symptoms

    Get PDF
    The present study examined the causes and consequences of stress generation in university students in Japan. A two-wave longitudinal study with an 8- or 9-week interval was conducted in the fall of 2020. Undergraduate and graduate students at four universities in Japan (N = 201) completed self-report measures assessing experiences of negative interpersonal dependent events, negative non-interpersonal events, and negative independent events at two times. At the same time, they also responded to measures of aggressive behaviors, trait rumination, and depressive symptoms. Path analyses revealed that baseline aggressive behaviors were positively associated with an increase in subsequent negative interpersonal dependent events, even after controlling for the influences of negative interpersonal dependent events, rumination, and depressive symptoms at baseline. However, aggressive behaviors were not significantly associated with subsequent negative non-interpersonal dependent events or negative independent events. These findings suggest that aggressive behaviors may have been a factor leading to interpersonal stress generation. Furthermore, all categories of negative event experiences predicted an increase in subsequent depressive symptoms, but not subsequent rumination, and rumination was not significantly associated with subsequent depressive symptoms. This research extends previous studies on the causes and consequences of stress generation conducted in the US by using specific measures of aggressive behaviors and including a non-restricted sample of university students in Japan

    Neutral endopeptidase inhibitor suppresses the early phase of atrial electrical remodeling in a canine rapid atrial pacing model

    Get PDF
    Introduction We examined the acute effects of neutral endopeptidase inhibitor on the hemodynamics and electrical properties of dogs subjected to rapid atrial pacing. Methods Ten beagle dogs were used and divided into two groups with and without candoxatril, a neutral endopeptidase inhibitor preadministration. Before and after the 6 hours rapid atrial pacing from the right atrial appendage, the hemodynamics, atrial effective refractory period, and monophasic action potential duration of the right atrial appendage were measured and blood samples were collected. Atrial tissue was also excised after the experiment. Results Candoxatril significantly increased plasma ANP levels (Control: 88.4 ± 50.25 vs. Candoxatril: 197.1 ± 32.09 pg/ml, p = 0.004) and prevented reductions in atrial effective refractory period and monophasic action potential duration. We further demonstrated that the treated animals exhibited significantly higher levels of atrial tissue cyclic GMP (Control: 28.1 ± 1.60 fmol/mg vs. Candoxatril: 44.5 ± 12.28 fmol/mg, p = 0.034) as well as that of plasma cyclic GMP (Control: 32 ± 5.5 vs. Candoxatril: 42 ± 7.1 pg/ml, p = 0.028). Conclusion Candoxatril suppressed the shortening of atrial effective refractory period and monophasic action potential duration in the rapid atrial pacing model. As plasma ANP and the atrial tissue levels of cyclic GMP were higher in the Candoxatril group than the control, this effect was considered to appear through the reduction of calcium overload caused by ANP and cyclic GMP

    Strong spin-orbit coupling inducing Autler-Townes effect in lead halide perovskite nanocrystals

    Get PDF
    ペロブスカイトナノ粒子において近赤外光による大きな超高速光変調を室温で実現 --光通信帯における新たな超高速光スイッチング技術の開発に期待--. 京都大学プレスリリース. 2021-05-24.Manipulation of excitons via coherent light-matter interaction is a promising approach for quantum state engineering and ultrafast optical modulation. Various excitation pathways in the excitonic multilevel systems provide controllability more efficient than that in the two-level system. However, these control schemes have been restricted to limited control-light wavelengths and cryogenic temperatures. Here, we report that lead halide perovskites can lift these restrictions owing to their multiband structure induced by strong spin-orbit coupling. Using CsPbBr₃ perovskite nanocrystals, we observe an anomalous enhancement of the exciton energy shift at room temperature with increasing control-light wavelength from the visible to near-infrared region. The enhancement occurs because the interconduction band transitions between spin-orbit split states have large dipole moments and induce a crossover from the two-level optical Stark effect to the three-level Autler-Townes effect. Our finding establishes a basis for efficient coherent optical manipulation of excitons utilizing energy states with large spin-orbit splitting
    corecore