216 research outputs found

    Construction of wiretap codes from ordinary channel codes

    Full text link
    From an arbitrary given channel code over a discrete or Gaussian memoryless channel, we construct a wiretap code with the strong security. Our construction can achieve the wiretap capacity under mild assumptions. The key tool is the new privacy amplification theorem bounding the eavesdropped information in terms of the Gallager function.Comment: 5 pages, no figure, IEEEtran.cls. Submitted to 2010 IEEE ISI

    Secure Multiplex Coding with Dependent and Non-Uniform Multiple Messages

    Full text link
    The secure multiplex coding (SMC) is a technique to remove rate loss in the coding for wire-tap channels and broadcast channels with confidential messages caused by the inclusion of random bits into transmitted signals. SMC replaces the random bits by other meaningful secret messages, and a collection of secret messages serves as the random bits to hide the rest of messages. In the previous researches, multiple secret messages were assumed to have independent and uniform distributions, which is difficult to be ensured in practice. We remove this restrictive assumption by a generalization of the channel resolvability technique. We also give practical construction techniques for SMC by using an arbitrary given error-correcting code as an ingredient, and channel-universal coding of SMC. By using the same principle as the channel-universal SMC, we give coding for the broadcast channel with confidential messages universal to both channel and source distributions.Comment: We made several changes to improve the presentatio

    Universal Secure Multiplex Network Coding with Dependent and Non-Uniform Messages

    Full text link
    We consider the random linear precoder at the source node as a secure network coding. We prove that it is strongly secure in the sense of Harada and Yamamoto and universal secure in the sense of Silva and Kschischang, while allowing arbitrary small but nonzero mutual information to the eavesdropper. Our security proof allows statistically dependent and non-uniform multiple secret messages, while all previous constructions of weakly or strongly secure network coding assumed independent and uniform messages, which are difficult to be ensured in practice.Comment: 10 pages, 1 figure, IEEEtrans.cls. Online published in IEEE Trans. Inform. Theor
    corecore