131 research outputs found

    Important roles of odontoblast membrane phospholipids in early dentin mineralization

    Get PDF
    The objective of this study was to first identify the timing and location of early mineralization of mouse first molar, and subsequently, to characterize the nucleation site for mineral formation in dentin from a materials science viewpoint and evaluate the effect of environmental cues (pH) affecting early dentin formation. Early dentin mineralization in mouse first molars began in the buccal central cusp on post-natal day 0 (P0), and was first hypothesized to involve collagen fibers. However, elemental mapping indicated the co-localization of phospholipids with collagen fibers in the early mineralization area. Co-localization of phosphatidylserine and annexin V, a functional protein that binds to plasma membrane phospholipids, indicated that phospholipids in the pre-dentin matrix were derived from the plasma membrane. A 3-dimensional in vitro biomimetic mineralization assay confirmed that phospholipids from the plasma membrane are critical factors initiating mineralization. Additionally, the direct measurement of the tooth germ pH, indicated it to be alkaline. The alkaline environment markedly enhanced the mineralization of cell membrane phospholipids. These results indicate that cell membrane phospholipids are nucleation sites for mineral formation, and could be important materials for bottom-up approaches aiming for rapid and more complex fabrication of dentin-like structures

    Fabrication of a Fish-Bone-Inspired Inorganic-Organic Composite Membrane

    Get PDF
    Biological materials have properties like great strength and flexibility that are not present in synthetic materials. Using the ribs of crucian carp as a reference, we investigated the mechanisms behind the high mechanical properties of this rib bone, and found highly oriented layers of calcium phosphate (CaP) and collagen fibers. To fabricate a fish-rib-bone-mimicking membrane with similar structure and mechanical properties, this study involves (1) the rapid synthesis of plate-like CaP crystals, (2) the layering of CaP-gelatin hydrogels by gradual drying, and (3) controlling the shape of composite membranes using porous gypsum molds. Finally, as a result of optimizing the compositional ratio of CaP filler and gelatin hydrogel, a CaP filler content of 40% provided the optimal mechanical properties of toughness and stiffness similar to fish bone. Due to the rigidity, flexibility, and ease of shape control of the composite membrane materials, this membrane could be applied as a guided bone regeneration (GBR) membrane

    Recruitment of Irgb6 to the membrane is a direct trigger for membrane deformation

    Get PDF
    Irgb6 is a member of interferon gamma-induced immunity related GTPase (IRG), and one of twenty "effector" IRGs, which coordinately attack parasitophorous vacuole membrane (PVM), causing death of intracellular pathogen. Although Irgb6 plays a pivotal role as a pioneer in the process of PVM disruption, the direct effect of Irgb6 on membrane remained to be elucidated. Here, we utilized artificial lipid membranes to reconstitute Irgb6-membrane interaction in vitro, and revealed that Irgb6 directly deformed the membranes. Liposomes incubated with recombinant Irgb6 were drastically deformed generating massive tubular protrusions in the absence of guanine nucleotide, or with GMP-PNP. Liposome deformation was abolished by incubating with Irgb6-K275A/R371A, point mutations at membrane targeting residues. The membrane tubules generated by Irgb6 were mostly disappeared by the addition of GTP or GDP, which are caused by detachment of Irgb6 from membrane. Binding of Irgb6 to the membrane, which was reconstituted in vitro using lipid monolayer, was stimulated at GTP-bound state. Irgb6 GTPase activity was stimulated by the presence of liposomes more than eightfold. Irgb6 GTPase activity in the absence of membrane was also slightly stimulated, by lowering ionic strength, or by increasing protein concentration, indicating synergistic stimulation of the GTPase activity. These results suggest that membrane targeting of Irgb6 and resulting membrane deformation does not require GTP, but converting into GTP-bound state is crucial for detaching Irgb6 from the membrane, which might coincident with local membrane disruption

    Micro-Architectural Investigation of Teleost Fish Rib Inducing Pliant Mechanical Property

    Get PDF
    Despite the fact that various reports have been discussing bone tissue regeneration, precise bone tissue manipulation, such as controlling the physical properties of the regenerated bone tissue, still remains a big challenge. Here, we focused on the teleost fish ribs showing flexible and tough mechanical properties to obtain a deeper insight into the structural and functional features of bone tissue from different species, which would be valuable for the superior design of bone-mimicking materials. Herein, we examined their compositions, microstructure, histology, and mechanical properties. The first rib of Carassius langsdorfii showed a higher Young's modulus with a small region of chondrocyte clusters compared with other smaller ribs. In addition, highly oriented collagen fibers and osteocytes were observed in the first rib, indicating that the longest first rib would be more mature. Moreover, the layer-by-layer structure of the oriented bone collagen was observed in each rib. These microarchitectural and compositional findings of fish rib bone would give one the useful idea to reproduce such a highly flexible rib bone-like material

    Biomimetic mineralization using matrix vesicle nanofragments

    Get PDF
    In vitro synthesis of bone tissue has been paid attention in recent years; however, current methods to fabricate bone tissue are still ineffective due to some remaining gaps in the understanding of real in vivo bone formation process, and application of the knowledge in bone synthesis. Therefore, the objectives of this study were first, to perform a systematic and ultrastructural investigation of the initial mineral formation during intramembranous ossification of mouse calvaria from a material scientists' viewpoint, and to develop novel mineralization methods based on the in vivo findings. First, the very initial mineral deposition was found to occur at embryonic day E14.0 in mouse calvaria. Analysis of the initial bone formation process showed that it involved the following distinct steps: collagen secretion, matrix vesicle (MV) release, MV mineralization, MV rupture, and collagen fiber mineralization. Next, we performed in vitro mineralization experiments using MVs and hydrogel scaffolds. Intact MVs embedded in collagen gel did not mineralize, whereas, interestingly, MV nanofragments obtained by ultrasonication could promote rapid mineralization. These results indicate that mechanically ruptured MV membrane can be a promising material for in vitro bone tissue synthesis. © 2019 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1021–1030, 2019.Kunitomi Y., Hara E.S., Okada M., et al. Biomimetic mineralization using matrix vesicle nanofragments. Journal of Biomedical Materials Research - Part A, 107, 5, 1021. https://doi.org/10.1002/jbm.a.36618

    Biomimetic mineralization using matrix vesicle nanofragments

    Get PDF
    In vitro synthesis of bone tissue has been paid attention in recent years; however, current methods to fabricate bone tissue are still ineffective due to some remaining gaps in the understanding of real in vivo bone formation process, and application of the knowledge in bone synthesis. Therefore, the objectives of this study were first, to perform a systematic and ultrastructural investigation of the initial mineral formation during intramembranous ossification of mouse calvaria from a material scientists' viewpoint, and to develop novel mineralization methods based on the in vivo findings. First, the very initial mineral deposition was found to occur at embryonic day E14.0 in mouse calvaria. Analysis of the initial bone formation process showed that it involved the following distinct steps: collagen secretion, matrix vesicle (MV) release, MV mineralization, MV rupture, and collagen fiber mineralization. Next, we performed in vitro mineralization experiments using MVs and hydrogel scaffolds. Intact MVs embedded in collagen gel did not mineralize, whereas, interestingly, MV nanofragments obtained by ultrasonication could promote rapid mineralization. These results indicate that mechanically ruptured MV membrane can be a promising material for in vitro bone tissue synthesis

    A mechanism of ion temperature peaking by impurity pellet injection in a heliotron plasma

    Get PDF
    Experiments on the Large Helical Device with the injection of carbon pellets into discharges of low density have demonstrated a significant reduction of the ion heat conduction in the plasma core and an increase in the central ion temperature by a factor of up to 2. These results are interpreted in the framework of a transport model elaborated on the basis of those applied previously to explain the improvement in confinement by impurity seeding into the tokamak devices TEXTOR and JET. The calculations performed reproduce well the strong peaking of the ion temperature profile with increasing carbon density nZ and the consequent drop in the confinement as nZ exceeds a certain critical level. The importance of different elements in the model, such as braking of the main ion rotation by friction with impurity ones and the shape of the density profiles, are investigated. A qualitative assessment of the applicability under fusion reactor conditions, e.g. of much higher plasma density and heating power, is performed

    Histological Remission during Corticosteroid Therapy of Overlapping Nonalcoholic Steatohepatitis and Autoimmune Hepatitis: Case Report and Literature Review

    Get PDF
    Concurrence of nonalcoholic steatohepatitis (NASH) with autoimmune hepatitis (AIH) is a rare condition that is challenging to diagnosis, due to the relatively high prevalence of autoantibodies in NASH. It is also difficult to determine the most effective treatment as corticosteroids are likely to worsen NASH despite being effective in the treatment of AIH. In this case report, we present a female diagnosed with NASH-AIH overlap with accompanying diabetes mellitus, who successfully achieved normalization of serum alanine aminotransferase levels following prednisolone therapy and weight loss. A follow-up liver biopsy performed 40 months after the initial diagnosis showed only minimal inflammatory infiltrates in the portal area without any NASH histology. Resolution of NASH, in conjunction with a reduction in hepatic fibrosis, might suggest that prednisolone itself does not aggravate steatohepatitis, but rather prevents disease progression. Appropriate immunosuppressive treatment may therefore be an important component of the optimum therapy for NASH-AIH overlap
    • …
    corecore