152 research outputs found

    Important roles of odontoblast membrane phospholipids in early dentin mineralization

    Get PDF
    The objective of this study was to first identify the timing and location of early mineralization of mouse first molar, and subsequently, to characterize the nucleation site for mineral formation in dentin from a materials science viewpoint and evaluate the effect of environmental cues (pH) affecting early dentin formation. Early dentin mineralization in mouse first molars began in the buccal central cusp on post-natal day 0 (P0), and was first hypothesized to involve collagen fibers. However, elemental mapping indicated the co-localization of phospholipids with collagen fibers in the early mineralization area. Co-localization of phosphatidylserine and annexin V, a functional protein that binds to plasma membrane phospholipids, indicated that phospholipids in the pre-dentin matrix were derived from the plasma membrane. A 3-dimensional in vitro biomimetic mineralization assay confirmed that phospholipids from the plasma membrane are critical factors initiating mineralization. Additionally, the direct measurement of the tooth germ pH, indicated it to be alkaline. The alkaline environment markedly enhanced the mineralization of cell membrane phospholipids. These results indicate that cell membrane phospholipids are nucleation sites for mineral formation, and could be important materials for bottom-up approaches aiming for rapid and more complex fabrication of dentin-like structures

    Re-Evaluation of Initial Bone Mineralization from an Engineering Perspective

    Get PDF
    Bone regeneration was one of the earliest fields to develop in the context of tissue regeneration, and currently, repair of small-sized bone defects has reached a high success rate. Future researches are expected to incorporate more advanced techniques toward achieving rapid bone repair and modulation of the regenerated bone quality. For these purposes, it is important to have a more integrative understanding of the mechanisms of bone formation and maturation from multiple perspectives and to incorporate these new concepts into the development and designing of novel materials and techniques for bone regeneration. This review focuses on the analysis of the earliest stages of bone tissue development from the biology, material science, and engineering perspectives for a more integrative understanding of bone formation and maturation, and for the development of novel biology-based engineering approaches for tissue synthesis in vitro. More specifically, the authors describe the systematic methodology that allowed the understanding of the different nucleation sites in intramembranous and endochondral ossification, the space-making process for mineral formation and growth, as well as the process of apatite crystal cluster growth in vivo in the presence of suppressing biomolecules. A detailed understanding of the developmental process of bone tissue leads to the acquisition of useful information for the bone tissue fabrication. This review summarizes the study of the calcification process of the calvaria and epiphyses from an engineering perspective and provides useful information for the realization of bone tissue biofabrication. Here, we describe the new mechanism of space formation for mineralization such as rupture of chondrocytes and disruption of cell-cell adhesion. We also describe the roles of nucleation site such as cell membrane nanofragments and matrix vesicles.Hara E.S., Okada M., Nagaoka N., et al. Re-Evaluation of Initial Bone Mineralization from an Engineering Perspective. Tissue Engineering - Part B: Reviews, 28, 1, 246. https://doi.org/10.1089/ten.teb.2020.0352

    Fabrication of a Fish-Bone-Inspired Inorganic-Organic Composite Membrane

    Get PDF
    Biological materials have properties like great strength and flexibility that are not present in synthetic materials. Using the ribs of crucian carp as a reference, we investigated the mechanisms behind the high mechanical properties of this rib bone, and found highly oriented layers of calcium phosphate (CaP) and collagen fibers. To fabricate a fish-rib-bone-mimicking membrane with similar structure and mechanical properties, this study involves (1) the rapid synthesis of plate-like CaP crystals, (2) the layering of CaP-gelatin hydrogels by gradual drying, and (3) controlling the shape of composite membranes using porous gypsum molds. Finally, as a result of optimizing the compositional ratio of CaP filler and gelatin hydrogel, a CaP filler content of 40% provided the optimal mechanical properties of toughness and stiffness similar to fish bone. Due to the rigidity, flexibility, and ease of shape control of the composite membrane materials, this membrane could be applied as a guided bone regeneration (GBR) membrane

    Recruitment of Irgb6 to the membrane is a direct trigger for membrane deformation

    Get PDF
    Irgb6 is a member of interferon gamma-induced immunity related GTPase (IRG), and one of twenty "effector" IRGs, which coordinately attack parasitophorous vacuole membrane (PVM), causing death of intracellular pathogen. Although Irgb6 plays a pivotal role as a pioneer in the process of PVM disruption, the direct effect of Irgb6 on membrane remained to be elucidated. Here, we utilized artificial lipid membranes to reconstitute Irgb6-membrane interaction in vitro, and revealed that Irgb6 directly deformed the membranes. Liposomes incubated with recombinant Irgb6 were drastically deformed generating massive tubular protrusions in the absence of guanine nucleotide, or with GMP-PNP. Liposome deformation was abolished by incubating with Irgb6-K275A/R371A, point mutations at membrane targeting residues. The membrane tubules generated by Irgb6 were mostly disappeared by the addition of GTP or GDP, which are caused by detachment of Irgb6 from membrane. Binding of Irgb6 to the membrane, which was reconstituted in vitro using lipid monolayer, was stimulated at GTP-bound state. Irgb6 GTPase activity was stimulated by the presence of liposomes more than eightfold. Irgb6 GTPase activity in the absence of membrane was also slightly stimulated, by lowering ionic strength, or by increasing protein concentration, indicating synergistic stimulation of the GTPase activity. These results suggest that membrane targeting of Irgb6 and resulting membrane deformation does not require GTP, but converting into GTP-bound state is crucial for detaching Irgb6 from the membrane, which might coincident with local membrane disruption

    Superior Durability of Dissimilar Material Joint between Steel and Thermoplastic Resin with Roughened Electrodeposited Nickel Interlayer

    Get PDF
    The durability of the dissimilar material joint between a steel coated with a roughened nickel plating-film and a thermoplastic resin is assessed. The roughened nickel film is fabricated by electrodeposition using carbon nanotubes (CNTs) as the roughening agent and a polyphenylenesulfide (PPS) resin as the thermoplastic resin. The plated steel and PPS resin are joined by injection molding without adhesive. The bonding strength is determined by a tensile lap shear strength test during the durability tests that includes a high-temperature and high-humidity test (85 +/- 2 degrees C, 85 +/- 2% relative humidity; 0-2000 h) and a thermal shock test (-50 degrees C-150 degrees C; 0-1000 cycles). During the high-temperature and high-humidity test, the bonding samples maintain their initial bonding strength (>40 MPa) even after 2000 h. By contrast, during the thermal shock test, although the bonding strength gradually decreases with increasing number of cycles, it remains above 20 MPa even after 1000 cycles. The mechanism of the deterioration of the bonding strength during the thermal shock test is analyzed in detail. The present joining method, which uses a roughened plating film as an interlayer, offers a way to achieve not only high initial bonding strength but also bonding durability for dissimilar material joining between steels and resins.ArticleADVANCED ENGINEERING MATERIALS. 22(12):2000739 (2020)journal articl

    Micro-Architectural Investigation of Teleost Fish Rib Inducing Pliant Mechanical Property

    Get PDF
    Despite the fact that various reports have been discussing bone tissue regeneration, precise bone tissue manipulation, such as controlling the physical properties of the regenerated bone tissue, still remains a big challenge. Here, we focused on the teleost fish ribs showing flexible and tough mechanical properties to obtain a deeper insight into the structural and functional features of bone tissue from different species, which would be valuable for the superior design of bone-mimicking materials. Herein, we examined their compositions, microstructure, histology, and mechanical properties. The first rib of Carassius langsdorfii showed a higher Young's modulus with a small region of chondrocyte clusters compared with other smaller ribs. In addition, highly oriented collagen fibers and osteocytes were observed in the first rib, indicating that the longest first rib would be more mature. Moreover, the layer-by-layer structure of the oriented bone collagen was observed in each rib. These microarchitectural and compositional findings of fish rib bone would give one the useful idea to reproduce such a highly flexible rib bone-like material

    Biomimetic mineralization using matrix vesicle nanofragments

    Get PDF
    In vitro synthesis of bone tissue has been paid attention in recent years; however, current methods to fabricate bone tissue are still ineffective due to some remaining gaps in the understanding of real in vivo bone formation process, and application of the knowledge in bone synthesis. Therefore, the objectives of this study were first, to perform a systematic and ultrastructural investigation of the initial mineral formation during intramembranous ossification of mouse calvaria from a material scientists' viewpoint, and to develop novel mineralization methods based on the in vivo findings. First, the very initial mineral deposition was found to occur at embryonic day E14.0 in mouse calvaria. Analysis of the initial bone formation process showed that it involved the following distinct steps: collagen secretion, matrix vesicle (MV) release, MV mineralization, MV rupture, and collagen fiber mineralization. Next, we performed in vitro mineralization experiments using MVs and hydrogel scaffolds. Intact MVs embedded in collagen gel did not mineralize, whereas, interestingly, MV nanofragments obtained by ultrasonication could promote rapid mineralization. These results indicate that mechanically ruptured MV membrane can be a promising material for in vitro bone tissue synthesis. © 2019 The Authors. journal Of Biomedical Materials Research Part A Published By Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1021–1030, 2019.Kunitomi Y., Hara E.S., Okada M., et al. Biomimetic mineralization using matrix vesicle nanofragments. Journal of Biomedical Materials Research - Part A, 107, 5, 1021. https://doi.org/10.1002/jbm.a.36618

    Biomimetic mineralization using matrix vesicle nanofragments

    Get PDF
    In vitro synthesis of bone tissue has been paid attention in recent years; however, current methods to fabricate bone tissue are still ineffective due to some remaining gaps in the understanding of real in vivo bone formation process, and application of the knowledge in bone synthesis. Therefore, the objectives of this study were first, to perform a systematic and ultrastructural investigation of the initial mineral formation during intramembranous ossification of mouse calvaria from a material scientists' viewpoint, and to develop novel mineralization methods based on the in vivo findings. First, the very initial mineral deposition was found to occur at embryonic day E14.0 in mouse calvaria. Analysis of the initial bone formation process showed that it involved the following distinct steps: collagen secretion, matrix vesicle (MV) release, MV mineralization, MV rupture, and collagen fiber mineralization. Next, we performed in vitro mineralization experiments using MVs and hydrogel scaffolds. Intact MVs embedded in collagen gel did not mineralize, whereas, interestingly, MV nanofragments obtained by ultrasonication could promote rapid mineralization. These results indicate that mechanically ruptured MV membrane can be a promising material for in vitro bone tissue synthesis
    • …
    corecore