713 research outputs found

    Circularly-Polarized Light Emission from Semiconductor Planar Chiral Photonic Crystal

    Full text link
    We proposed and demonstrated a scheme of surface emitting circularly polarized light source by introducing strong imbalance between left- and right-circularly polarized vacuum fields in an on-waveguide chiral grating structure. We observed circularly polarized spontaneous emission from InAs quantum dots embedded in the wave guide region of a GaAs-based structure. Obtained degree of polarization reaches as large as 25% at room temperature. Numerical calculation visualizes spatial profiles of the modification of vacuum field modes inside the structure with strong circular anisotropy.Comment: REVTeX4.1, 6pages, 3figure

    MOIRCS Deep Survey. II. Clustering Properties of K-band Selected Galaxies in GOODS-North Region

    Get PDF
    We present the first measurement of clustering properties of low mass galaxies with a stellar mass down to M_*~10^9 Msun at 1<z<4 in 24.4 arcmin^2 of the GOODS-North region with a depth of K_{AB}~25, based on the near infrared observations performed with MOIRCS at the Subaru Telescope. The correlation amplitude strongly depends on the K-band flux, color, and stellar mass of the galaxies. We find that K-band luminous galaxies have a larger correlation length than K-band faint galaxies. For color selected samples at 2<z<4, distant red galaxies with J-K>1.3 show a large bias of b~7.2+-1.3 on scales up to \theta~100" or 3.1 comoving Mpc, while blue galaxies with 0.5<J-K<1.3, in which most Lyman break galaxies are populated, have a weak clustering signal on large scales, but a possible strong small scale excess at \theta<10". For massive galaxies with M_*>~10^{10} Msun, we estimate a correlation length and bias to be r_0~4.5 h^{-1} Mpc and b=1.9-3.5, which are much larger than those of low mass (M_*~10^9-10^{10} Msun) galaxies. The comparison of our measurements with analytic CDM models constrains the properties of hosting dark halos, and indicates that the low mass galaxies would be progenitors of galaxies with a typical luminosity of L<~L_* in the local Universe. The blue galaxies in low mass samples are more strongly clustered in more massive halos with higher occupation numbers than low mass red galaxies. This fact suggests an environment effect due to the halo mass on star formation activity at high-z.Comment: 15 pages, 11 figures, submitted to PAS

    Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1alpha

    Get PDF
    PURPOSE: Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-(123)I-iodobenzoyl)norbiotinamide ((123)I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and (123)I-IBB for rapid imaging of HIF-1-active tumours. METHODS: Tumour-implanted mice were pretargeted with POS. After 24 h, (125)I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between (125)I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of (125)I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1alpha immunohistochemistry. RESULTS: (125)I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from (125)I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of (125)I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of (125)I-IBB was heterogeneous and was significantly correlated with HIF-1alpha-positive regions (R=0.58, p<0.0001). CONCLUSION: POS pretargeting with (123)I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours

    Assembly of Massive Galaxies in a High-z Protocluster

    Get PDF
    We present the results of wide-field deep JHK imaging of the SSA22 field using MOIRCS instrument equipped with Subaru telescope. The observed field is 112 arcmin^2 in area, which covers the z=3.1 protocluster characterized by the overdensities of Ly Alpha emitters (LAEs) and Ly Alpha Blobs (LABs). The 5 sigma limiting magnitude is K_{AB} = 24.3. We extract the potential protocluster members from the K-selected sample by using the multi-band photometric-redshift selection as well as the simple color cut for distant red galaxies (DRGs; J-K_{AB}>1.4). The surface number density of DRGs in our observed fields shows clear excess compared with those in the blank fields, and the location of the densest area whose projected overdensity is twice the average coincides with the large-scale density peak of LAEs. We also found that K-band counterparts with z_{phot} = 3.1 are detected for 75% (15/20) of the LABs within their Ly Alpha halo, and the 40 % (8/20) of LABs have multiple components, which gives a direct evidence of the hierarchical multiple merging in galaxy formation. The stellar mass ofLABs correlates with their luminosity, isophotal area, and the Ly Alpha velocity widths, implying that the physical scale and the dynamical motion of Ly Alpha emission are closely related to their previous star-formation activities. Highly dust-obscured galaxies such as hyper extremely red objects (HEROs; J-K_{AB}>2.1) and plausible K-band counterparts of submillimeter sources are also populated in the high density region.Comment: 21pages, accepted for publication in Astrophysical Journa

    MOIRCS Deep Survey. VII: NIR Morphologies of Star-forming Galaxies at Redshift z~1

    Full text link
    We investigate rest-frame near-infrared (NIR) morphologies of a sample of 139 galaxies with M_{s} >= 1 x 10^{10} M_{sun} at z=0.8-1.2 in the GOODS-North field using our deep NIR imaging data (MOIRCS Deep Survey, MODS). We focus on Luminous Infrared Galaxies (LIRGs), which dominate high star formation rate (SFR) density at z~1, in the sample identified by cross-correlating with the Spitzer/MIPS 24um source catalog. We perform two-dimensional light profile fitting of the z~1 galaxies in the Ks-band (rest-frame J-band) with a single component Sersic model. We find that at z~1, ~90% of LIRGs have low Sersic indices (n<2.5, similar to disk-like galaxies) in the Ks-band, and those disk-like LIRGs consist of ~60% of the whole disk-like sample above M_{s} >= 3 x 10^{10} M_{sun}. The z~1 disk-like LIRGs are comparable or ~20% small at a maximum in size compared to local disk-like galaxies in the same stellar mass range. If we examine rest-frame UV-optical morphologies using the HST/ACS images, the rest-frame B-band sizes of the z~1 disk-like galaxies are comparable to those of the local disk-like galaxies as reported by previous studies on size evolution of disk-like galaxies in the rest-frame optical band. Measuring color gradients (galaxy sizes as a function of wavelength) of the z~1 and local disk-like galaxies, we find that the z~1 disk-like galaxies have 3-5 times steeper color gradient than the local ones. Our results indicate that (i) more than a half of relatively massive disk-like galaxies at z~1 are in violent star formation epochs observed as LIRGs, and also (ii) most of those LIRGs are constructing their fundamental disk structure vigorously. The high SFR density in the universe at z~1 may be dominated by such star formation in disk region in massive galaxies.Comment: 16 pages, 15 figures, accepted for publication in PASJ. Catalog data will be available at http://astr.tohoku.ac.jp/MODS/wiki/index.php soo

    MOIRCS Deep Survey V: A Universal Relation for Stellar Mass and Surface Brightness of Galaxies

    Full text link
    We present a universal linear correlation between the stellar mass and surface brightness (SB) of galaxies at 0.3<z<3, using a deep K-band selected catalog in the GOODS-North region. The correlation has a nearly constant slope, independent of redshift and color of galaxies in the rest-z frame. Considering unresolved compact galaxies, the tight correlation gives a lower boundary of SB for a given stellar mass; lower SB galaxies are prohibited over the boundary. The universal slope suggests that the stellar mass in galaxies was build up over their cosmic histories in a similar manner irrelevant to galaxy mass, as oppose to the scenario that massive galaxies mainly accumulated their stellar mass by major merging. In contrast, SB shows a strong dependence on redshift for a given stellar mass. It evolves as (1+z)^(-2.0~-0.8), in addition to dimming as (1+z)^4 by the cosmological expansion effect. The brightening depends on galaxy color and stellar mass. The blue population (rest-frame U-V<0), which is dominated by young and star-forming galaxies, evolves as ~(1+z)^(-0.8 +-0.3) in the rest-V band. On the other hand, the red population (U-V>0) and the massive galaxies (M_*>10^(10)M_sun) shows stronger brightening, (1+z)^(-1.5+-0.1). Based on the comparison with galaxy evolution models, we find that the phenomena are well explained by the pure luminosity evolution of galaxies out to z~3.Comment: 10 pages, 9 figures. Accepted for publication in Ap
    corecore