193 research outputs found

    Vision evaluation by functional observational battery, operant behavior test, and light/dark box test in retinal dystrophic RCS rats versus normal rats

    Get PDF
    BACKGROUND: Vision plays a key role in some behavior tests for rats. Okayama University-type retinal prosthesis (OUReP) is a photoelectric dye-coupled polyethylene film which generates electric potential in response to light and stimulates nearby neurons. This study aims to assess vision in retinal dystrophic (RCS) rats, in comparison with normal rats, by selected behavior tests. We also examined whether the tests could detect vision changes in RCS rats with dye-coupled film implantation. METHODS: Data sets were 5 normal rats, 4 untreated RCS rats, 7 RCS rats with dye-coupled films implanted at the age of 7 weeks after excluding unsuccessful implantation at autopsy. Behavior tests chosen were landing foot splay and visual forelimb-placing response in the menu of functional observational battery, operant-conditioning lever-press response and light/dark box test. RESULTS: Normal visual placing response was significantly less frequent in untreated RCS rats at the age of 9 and 11 weeks, compared with normal rats (P = 0.0027, chi-square test) while normal response was significantly more frequent at the age of 9 weeks in RCS rats with dye-coupled film implantation, compared with untreated RCS rats (P = 0.0221). In operant-conditioning lever-press test, the correct response rate was significantly lower in untreated RCS rats than in normal rats at the age of 9 weeks (P CONCLUSIONS: Behavior tests of functional observational battery, operant-conditioning lever-press response and light/dark box test discriminated vision between normal rats and RCS rats. The visual placing response and operant-conditioning lever-press test might have sensitivity to detect vision recovery in RCS rats with OUReP implantation

    Local Release of C-Reactive Protein From Vulnerable Plaque or Coronary Arterial Wall Injured by Stenting

    Get PDF
    ObjectivesThe purpose of this study was to assess local release of C-reactive protein (CRP) from atherosclerotic plaques or the vessel wall injured by stenting.BackgroundRecent research has focused on the local production of CRP, especially in inflammatory atherosclerotic plaques.MethodsThe study consisted of two separate protocols. In protocol 1, we measured serum high-sensitivity-CRP (hs-CRP) levels in coronary arterial blood sampled just distal and proximal to the culprit lesions in 36 patients with stable angina and 13 patients with unstable angina. In protocol 2, we measured serial serum hs-CRP levels and activated Mac-1 on the surface of neutrophils in both coronary sinus and peripheral blood in 20 patients undergoing coronary stenting.ResultsIn protocol 1, CRP was higher in distal blood than proximal blood in both stable (p < 0.05) and unstable angina (p < 0.01). The translesional CRP gradient (distal CRP minus proximal CRP, p < 0.05) as well as the proximal CRP (p < 0.05) and distal CRP (p < 0.05) was higher in unstable angina than in stable angina. In protocol 2, the transcardiac CRP gradient (coronary sinus minus peripheral blood) and activated Mac-1 increased gradually after stenting, reaching a maximum at 48 h (p < 0.001 vs. baseline for both). There was a positive correlation between the transcardiac CRP gradient and activated Mac-1 at 48 h (r = 0.45, p < 0.01).ConclusionsC-reactive protein is an excellent marker for plaque instability or poststent inflammatory status, and its source might be the inflammation site of the plaque or the coronary arterial wall injured by stenting

    Cytosolic Double-Stranded DNA as a Damage-Associated Molecular Pattern Induces the Inflammatory Response in Rat Pancreatic Stellate Cells: A Plausible Mechanism for Tissue Injury-Associated Pancreatitis

    Get PDF
    Pancreatitis is an inflammatory disease of unknown causes. There are many triggers causing pancreatitis, such as alcohol, common bile duct stone, virus and congenital or acquired stenosis of main pancreatic duct, which often involve tissue injuries. Pancreatitis often occurs in sterile condition, where the dead/dying pancreatic parenchymal cells and the necrotic tissues derived from self-digested-pancreas were observed. However, the causal relationship between tissue injury and pancreatitis and how tissue injury could induce the inflammation of the pancreas were not elucidated fully until now. This study demonstrates that cytosolic double-stranded DNA increases the expression of several inflammatory genes (cytokines, chemokines, type I interferon, and major histocompatibility complex) in rat pancreatic stellate cells. Furthermore, these increase accompanied the multiple signal molecules genes, such as interferon regulatory factors, nuclear factor-kappa B, low-molecular-weight protein 2, and transporter associated with antigen processing 1. We suggest that this phenomenon is a plausible mechanism that might explain how cell damage of the pancreas or tissue injury triggers acute, chronic, and autoimmune pancreatitis; it is potentially relevant to host immune responses induced during alcohol consumption or other causes

    ATM activation by a sulfhydryl-reactive inflammatory cyclopentenone prostaglandin

    Get PDF
    がん研究所がん分子細胞制御ATM (ataxia-telangiectasia mutated) is activated by a variety of noxious agent, including oxidative stress, and ATM deficiency results in an anomalous cellular response to oxidative stress. However, the mechanisms for ATM activation by oxidative stress remain to be established. Furthermore, it is not clear whether ATM responds to oxidative DNA damage or to a change in the intracellular redox state, independent of DNA damage. We found that ATM is activated by N-methyl-N′-nitro-nitrosoguanidine (MNNG) and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), in NBS1- or MSH6-deficient cells. We further found that ATM is activated by treating chromatin-free immunoprecipitated ATM with MNNG or 15d-PGJ2, which modifies free sulfhydryl (SH) groups, and that 15d-PGJ2 binds covalently to ATM. Interestingly, 15d-PGJ2-induced ATM activation leads to p53 activation and apoptosis, but not to Chk2 or H2AX phosphorylation. These results indicate that ATM is activated through the direct modification of its SH groups, independent of DNA damage, and this activation leads, downstream, to apoptosis. © 2006 The Authors Journal compilation © 2006 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd

    A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA cross-link repair.

    Get PDF
    When DNA replication is stalled at sites of DNA damage, a cascade of responses is activated in the cell to halt cell cycle progression and promote DNA repair. A pathway initiated by the kinase Ataxia teleangiectasia and Rad3 related (ATR) and its partner ATR interacting protein (ATRIP) plays an important role in this response. The Fanconi anemia (FA) pathway is also activated following genomic stress, and defects in this pathway cause a cancer-prone hematologic disorder in humans. Little is known about how these two pathways are coordinated. We report here that following cellular exposure to DNA cross-linking damage, the FA core complex enhances binding and localization of ATRIP within damaged chromatin. In cells lacking the core complex, ATR-mediated phosphorylation of two functional response targets, ATRIP and FANCI, is defective. We also provide evidence that the canonical ATR activation pathway involving RAD17 and TOPBP1 is largely dispensable for the FA pathway activation. Indeed DT40 mutant cells lacking both RAD17 and FANCD2 were synergistically more sensitive to cisplatin compared with either single mutant. Collectively, these data reveal new aspects of the interplay between regulation of ATR-ATRIP kinase and activation of the FA pathway
    corecore