83 research outputs found

    Intraoperative lavage cytologic analysis of surgical margins in patients undergoing limited surgery for lung cancer

    Get PDF
    AbstractBackground: One of the unfavorable recurrent patterns after limited surgery for lung cancer is local failure, especially at the surgical margin in the pulmonary parenchyma. To prevent this failure, we preliminarily introduced a novel intraoperative lavage cytologic technique to check surgical margin status for limited surgery. In this study we analyzed the clinical utility of this technique with a larger number of patients under long-term follow-up. Methods: A total 112 consecutive lung cancer lesions prospectively treated by limited surgery with the intraoperative lavage cytologic technique between October 1997 and August 2000 were reviewed through a median follow-up period of 27 months. Results: Eleven lesions (10%) showed cytologically positive results in the attempted surgery on the surgical margin. The positive result rate was significantly higher for lesions with more advanced stage, compromised indication, incurability, and larger size. Surgical modes were converted intraoperatively for 4 lesions; in the other 7 lesions no conversion was performed because of certain disadvantages. Local recurrence in the surgical margin occurred in a total of 4 lesions, including 3 for which the operative mode was unconverted and 1 lesion with cytologically unknown status of the surgical margin that had the mode converted, whereas there were no local recurrences in the surgical margins among the lesions with final cytologically negative results. Conclusion: Cytologically negative results of examination of the surgical margin by the technique of intraoperative lavage cytologic in limited surgery for lung cancer may be predict lack of local recurrence in the surgical margin. This intraoperative cytologic technique is clinically useful in checking for complete resection of this primary disease.J Thorac Cardiovasc Surg 2003;125:101-

    Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amino-acid balance in cancer patients often differs from that in healthy individuals, because of metabolic changes. This study investigated the use of plasma amino-acid profiles as a novel marker for screening non-small-cell lung cancer (NSCLC) patients.</p> <p>Methods</p> <p>The amino-acid concentrations in venous blood samples from pre-treatment NSCLC patients (<it>n </it>= 141), and age-matched, gender-matched, and smoking status-matched controls (<it>n </it>= 423), were measured using liquid chromatography and mass spectrometry. The resultant study data set was subjected to multiple logistic regression analysis to identify amino acids related with NSCLC and construct the criteria for discriminating NSCLC patients from controls. A test data set derived from 162 patients and 3,917 controls was used to validate the stability of the constructed criteria.</p> <p>Results</p> <p>The plasma amino-acid profiles significantly differed between the NSCLC patients and the controls. The obtained model (including alanine, valine, isoleucine, histidine, tryptophan and ornithine concentrations) performed well, with an area under the curve of the receiver-operator characteristic curve (ROC_AUC) of >0.8, and allowed NSCLC patients and controls to be discriminated regardless of disease stage or histological type.</p> <p>Conclusions</p> <p>This study shows that plasma amino acid profiling will be a potential screening tool for NSCLC.</p

    Plasma Free Amino Acid Profiling of Five Types of Cancer Patients and Its Application for Early Detection

    Get PDF
    BACKGROUND: Recently, rapid advances have been made in metabolomics-based, easy-to-use early cancer detection methods using blood samples. Among metabolites, profiling of plasma free amino acids (PFAAs) is a promising approach because PFAAs link all organ systems and have important roles in metabolism. Furthermore, PFAA profiles are known to be influenced by specific diseases, including cancers. Therefore, the purpose of the present study was to determine the characteristics of the PFAA profiles in cancer patients and the possibility of using this information for early detection. METHODS AND FINDINGS: Plasma samples were collected from approximately 200 patients from multiple institutes, each diagnosed with one of the following five types of cancer: lung, gastric, colorectal, breast, or prostate cancer. Patients were compared to gender- and age- matched controls also used in this study. The PFAA levels were measured using high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-mass spectrometry (MS). Univariate analysis revealed significant differences in the PFAA profiles between the controls and the patients with any of the five types of cancer listed above, even those with asymptomatic early-stage disease. Furthermore, multivariate analysis clearly discriminated the cancer patients from the controls in terms of the area under the receiver-operator characteristics curve (AUC of ROC >0.75 for each cancer), regardless of cancer stage. Because this study was designed as case-control study, further investigations, including model construction and validation using cohorts with larger sample sizes, are necessary to determine the usefulness of PFAA profiling. CONCLUSIONS: These findings suggest that PFAA profiling has great potential for improving cancer screening and diagnosis and understanding disease pathogenesis. PFAA profiles can also be used to determine various disease diagnoses from a single blood sample, which involves a relatively simple plasma assay and imposes a lower physical burden on subjects when compared to existing screening methods

    Akt kinase-interacting protein1, a novel therapeutic target for lung cancer with EGFR-activating and gatekeeper mutations

    Get PDF
    Despite initial dramatic response, epidermal growth factor receptor (EGFR) mutant lung cancer patients always acquire resistance to EGFR-tyrosine kinase inhibitors (TKIs). Gatekeeper T790M mutation in EGFR is the most prevalent genetic alteration underlying acquired resistance to EGFR-TKI, and EGFR mutant lung cancer cells are reported to be addictive to EGFR/Akt signaling even after acquired T790M mutation. Here, we focused on Akt kinase-interacting protein1 (Aki1), a scaffold protein of PI3K (phosphoinositide 3-kinase)/PDK1 (3-phosphoinositide-dependent protein kinase)/Akt that determines receptor signal selectivity for non-mutated EGFR, and assessed its role in EGFR mutant lung cancer with or without gatekeeper T790M mutation. Cell line-based assays showed that Aki1 constitutively associates with mutant EGFR in lung cancer cells with (H1975) or without (PC-9 and HCC827) T790M gatekeeper mutation. Silencing of Aki1 induced apoptosis of EGFR mutant lung cancer cells. Treatment with Aki1 siRNA dramatically inhibited growth of H1975 cells in a xenograft model. Moreover, silencing of Aki1 further potentiated growth inhibitory effect of new generation EGFR-TKIs against H1975 cells in vitro. Aki1 was frequently expressed in tumor cells of EGFR mutant lung cancer patients (53/56 cases), including those with acquired resistance to EGFR-TKI treatment (7/7 cases). Our data suggest that Aki1 may be a critical mediator of survival signaling from mutant EGFR to Akt, and may therefore be an ideal target for EGFR mutant lung cancer patients, especially those with acquired EGFR-TKI resistance due to EGFR T790M gatekeeper mutation.Oncogene advance online publication, 8 October 2012; doi:10.1038/onc.2012.446.In Press → 発行後6か月より全文を公開

    Elevated β-catenin pathway as a novel target for patients with resistance to EGF receptor targeting drugs

    Get PDF
    There is a high death rate of lung cancer patients. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are effective in some lung adenocarcinoma patients with EGFR mutations. However, a significant number of patients show primary and acquire resistance to EGFR-TKIs. Although the Akt kinase is commonly activated due to various resistance mechanisms, the key targets of Akt remain unclear. Here, we show that the Akt-β-catenin pathway may be a common resistance mechanism. We analyzed gene expression profiles of gefitinib-resistant PC9M2 cells that were derived from gefitinib-sensitive lung cancer PC9 cells and do not have known resistance mechanisms including EGFR mutation T790M. We found increased expression of Axin, a β-catenin target gene, increased phosphorylation of Akt and GSK3, accumulation of β-catenin in the cytoplasm/nucleus in PC9M2 cells. Both knockdown of β-catenin and treatment with a β-catenin inhibitor at least partially restored gefitinib sensitivity to PC9M2 cells. Lung adenocarcinoma tissues derived from gefitinib-resistant patients displayed a tendency to accumulate β-catenin in the cytoplasm. We provide a rationale for combination therapy that includes targeting of the Akt-β-catenin pathway to improve the efficacy of EGFR-TKIs

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Evaluation of surgical treatment for malignant pleural mesothelioma of death cases in Japan

    No full text
    corecore