48 research outputs found

    Unique Conformation of Kinesin-1′s Neck Linker in the Nucleotide-free State

    Get PDF

    Three-dimensional structures of the flagellar dynein–microtubule complex by cryoelectron microscopy

    Get PDF
    The outer dynein arms (ODAs) of the flagellar axoneme generate forces needed for flagellar beating. Elucidation of the mechanisms underlying the chemomechanical energy conversion by the dynein arms and their orchestrated movement in cilia/flagella is of great importance, but the nucleotide-dependent three-dimensional (3D) movement of dynein has not yet been observed. In this study, we establish a new method for reconstructing the 3D structure of the in vitro reconstituted ODA–microtubule complex and visualize nucleotide-dependent conformational changes using cryoelectron microscopy and image analysis. As the complex went from the rigor state to the relaxed state, the head domain of the β heavy chain shifted by 3.7 nm toward the B tubule and inclined 44° inwards. These observations suggest that there is a mechanism that converts head movement into the axonemal sliding motion

    Binocular stereo-navigation for three-dimensional thoracoscopic lung resection

    Get PDF
    BACKGROUND: This study investigated the efficacy of binocular stereo-navigation during three-dimensional (3-D) thoracoscopic sublobar resection (TSLR). METHODS: From July 2001, the authors’ department began to use a virtual 3-D pulmonary model on a personal computer (PC) for preoperative simulation before thoracoscopic lung resection and for intraoperative navigation during operation. From 120 of 1-mm thin-sliced high-resolution computed tomography (HRCT)-scan images of tumor and hilum, homemade software CTTRY allowed sugeons to mark pulmonary arteries, veins, bronchi, and tumor on the HRCT images manually. The location and thickness of pulmonary vessels and bronchi were rendered as diverse size cylinders. With the resulting numerical data, a 3-D image was reconstructed by Metasequoia shareware. Subsequently, the data of reconstructed 3-D images were converted to Autodesk data, which appeared on a stereoscopic-vision display. Surgeons wearing 3-D polarized glasses performed 3-D TSLR. RESULTS: The patients consisted of 5 men and 5 women, ranging in age from 65 to 84 years. The clinical diagnoses were a primary lung cancer in 6 cases and a solitary metastatic lung tumor in 4 cases. Eight single segmentectomies, one bi-segmentectomy, and one bi-subsegmentectomy were performed. Hilar lymphadenectomy with mediastinal lymph node sampling has been performed in 6 primary lung cancers, but four patients with metastatic lung tumors were performed without lymphadenectomy. The operation time and estimated blood loss ranged from 125 to 333 min and from 5 to 187 g, respectively. There were no intraoperative complications and no conversion to open thoracotomy and lobectomy. Postoperative courses of eight patients were uneventful, and another two patients had a prolonged lung air leak. The drainage duration and hospital stay ranged from 2 to 13 days and from 8 to 19 days, respectively. The tumor histology of primary lung cancer showed 5 adenocarcinoma and 1 squamous cell carcinoma. All primary lung cancers were at stage IA. The organs having metastatic pulmonary tumors were kidney, bladder, breast, and rectum. No patients had macroscopically positive surgical margins. CONCLUSIONS: Binocular stereo-navigation was able to identify the bronchovascular structures accurately and suitable to perform TSLR with a sufficient margin for small pulmonary tumors

    Imparting CO₂ reduction selectivity to ZnGa₂O₄ photocatalysts by crystallization from hetero nano assembly of amorphous-like metal hydroxides

    Get PDF
    Imparting an enhanced CO₂ reduction selectivity to ZnGa₂O₄ photocatalysts has been demonstrated by controlled crystallization from interdispersed nanoparticles of zinc and gallium hydroxides. The hydroxide precursor in which Zn(II) and Ga(III) are homogeneously interdispersed was prepared through an epoxide-driven sol–gel reaction. ZnGa₂O₄ obtained by a heat-treatment exhibits a higher surface basicity and an enhanced affinity for CO₂ molecules than previously-reported standard ZnGa₂O₄. The enhanced affinity for CO₂ molecules of the resultant ZnGa₂O₄ leads to highly-selective CO evolution in CO₂ photo-reduction with H₂O reductants. The present scheme is promising to achieve desirable surface chemistry on metal oxide photocatalysts

    A novel and simple method for identifying the lung intersegmental plane with an infrared thermography

    Get PDF
    25th WSCTS Annual Meeting and Exhibiotion 2015 2015年09月21日 Edinburgh, Scotlan

    The tertiary structure of the human Xkr8–Basigin complex that scrambles phospholipids at plasma membranes

    Get PDF
    Xkr8–Basigin is a plasma membrane phospholipid scramblase activated by kinases or caspases. We combined cryo-EM and X-ray crystallography to investigate its structure at an overall resolution of 3.8 Å. Its membrane-spanning region carrying 22 charged amino acids adopts a cuboid-like structure stabilized by salt bridges between hydrophilic residues in transmembrane helices. Phosphatidylcholine binding was observed in a hydrophobic cleft on the surface exposed to the outer leaflet of the plasma membrane. Six charged residues placed from top to bottom inside the molecule were essential for scrambling phospholipids in inward and outward directions, apparently providing a pathway for their translocation. A tryptophan residue was present between the head group of phosphatidylcholine and the extracellular end of the path. Its mutation to alanine made the Xkr8–Basigin complex constitutively active, indicating that it plays a vital role in regulating its scramblase activity. The structure of Xkr8–Basigin provides insights into the molecular mechanisms underlying phospholipid scrambling
    corecore