17 research outputs found
Involvement of adiponectin in age-related increases in tear production in mice
Common age-related changes in the human eye contribute to the development of dry eye, including decreases in aqueous tear production. Although the infiltration of lymphocytes into the lacrimal glands occurs with age, age-related increases in tear production have also been observed in mice; however, the mechanisms underlying this increase remain unclear. We herein demonstrated that increases in tear production were not dependent on body weight gain or systemic conditions, such as insulin resistance, using aged mice and high-fat diet-fed mice. The results obtained also showed that senescence-associated T (SA-T) cells accumulated in the lacrimal glands of aged mice, particularly females. Expression levels of the nuclear transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) in whole lacrimal glands and epithelial cells isolated from lacrimal glands were significantly higher in aged mice than in young mice. The expression levels of adiponectin and one of its receptors, AdipoR2, also increased in the lacrimal glands of aged mice, but not in those of high-fat diet-fed mice. Collectively, the present results indicate that PPARγ and adiponectin-mediated signaling contribute to age-related increases in tear production in mice and have potential as therapeutic targets for the treatment of dry eye in humans
Chemokines Up-Regulated in Epithelial Cells Control Senescence-Associated T Cell Accumulation in Salivary Glands of Aged and Sjögren’s Syndrome Model Mice
Immunosenescence is characterized by age-associated changes in immunological functions. Although age- and autoimmune-related sialadenitis cause dry mouth (xerostomia), the roles of immunosenescence and cellular senescence in the pathogenesis of sialadenitis remain unknown. We demonstrated that acquired immune cells rather than innate immune cells infiltrated the salivary glands (SG) of aged mice. An analysis of isolated epithelial cells from SG revealed that the expression levels of the chemokine CXCL13 were elevated in aged mice. Senescence-associated T cells (SA-Ts), which secrete large amounts of atypical pro-inflammatory cytokines, are involved in the pathogenesis of metabolic disorders and autoimmune diseases. The present results showed that SA-Ts and B cells, which express the CXCL13 receptor CXCR5, accumulated in the SG of aged mice, particularly females. CD4+ T cells derived from aged mice exhibited stronger in vitro migratory activity toward CXCL13 than those from young mice. In a mouse model of Sjögren’s syndrome (SS), SA-Ts also accumulated in SG, presumably via CXCL12-CXCR4 signaling. Collectively, the present results indicate that SA-Ts accumulate in SG, contribute to the pathogenesis of age- and SS-related sialadenitis by up-regulating chemokines in epithelial cells, and have potential as therapeutic targets for the treatment of xerostomia caused by these types of sialadenitis
Increase of nitrosative stress in patients with eosinophilic pneumonia
<p>Abstract</p> <p>Background</p> <p>Exhaled nitric oxide (NO) production is increased in asthma and reflects the degree of airway inflammation. The alveolar NO concentration (Calv) in interstitial pneumonia is reported to be increased. However, it remains unknown whether NO production is increased and nitrosative stress occurs in eosinophilic pneumonia (EP). We hypothesized that nitrosative stress markers including Calv, inducible type of NO synthase (iNOS), and 3-nitrotyrosine (3-NT), are upregulated in EP.</p> <p>Methods</p> <p>Exhaled NO including fractional exhaled NO (FE<sub>NO</sub>) and Calv was measured in ten healthy subjects, 13 patients with idiopathic pulmonary fibrosis (IPF), and 13 patients with EP. iNOS expression and 3-NT formation were assessed by immunocytochemistory in BALf cells. The exhaled NO, lung function, and systemic inflammatory markers of the EP patients were investigated after corticosteroid treatment for 4 weeks.</p> <p>Results</p> <p>The Calv levels in the EP group (14.4 ± 2.0 ppb) were significantly higher than those in the healthy subjects (5.1 ± 0.6 ppb, p < 0.01) and the IPF groups (6.3 ± 0.6 ppb, p < 0.01) as well as the FE<sub>NO </sub>and the corrected Calv levels (all p < 0.01). More iNOS and 3-NT positive cells were observed in the EP group compared to the healthy subject and IPF patient. The Calv levels had significant positive correlations with both iNOS (r = 0.858, p < 0.05) and 3-NT positive cells (r = 0.924, p < 0.01). Corticosteroid treatment significantly reduced both the FE<sub>NO </sub>(p < 0.05) and the Calv levels (p < 0.01). The magnitude of reduction in the Calv levels had a significant positive correlation with the peripheral blood eosinophil counts (r = 0.802, p < 0.05).</p> <p>Conclusions</p> <p>These results suggested that excessive nitrosative stress occurred in EP and that Calv could be a marker of the disease activity.</p
Correction: Furukawa et al. Long-Term Soft-Food Rearing in Young Mice Alters Brain Function and Mood-Related Behavior. <i>Nutrients</i> 2023, <i>15</i>, 2397
In the original publication [...
Erythritol Can Inhibit the Expression of Senescence Molecules in Mouse Gingival Tissues and Human Gingival Fibroblasts
Oral aging causes conditions including periodontal disease. We investigated how the sugar alcohol erythritol, which has anti-caries effects, impacts aging periodontal tissues and gingival fibroblasts in mice and humans in vivo and in vitro. Mice were classified into three groups: control groups of six-week-old (YC) and eighteen-month-old mice (AC) and a group receiving 5% w/w erythritol water for 6 months (AE). After rearing, RNA was extracted from the gingiva, and the levels of aging-related molecules were measured using PCR. Immunostaining was performed for the aging markers p21, γH2AX, and NF-κB p65. p16, p21, γH2AX, IL-1β, and TNFα mRNA expression levels were higher in the gingiva of the AC group than in the YC group, while this enhanced expression was significantly suppressed in AE gingiva. NF-κB p65 expression was high in the AC group but was strongly suppressed in the AE group. We induced senescence in cultured human gingival fibroblasts using H2O2 and lipopolysaccharide before erythritol treatment, which reduced elevated senescence-related marker (p16, p21, SA-β-gal, IL-1β, and TNFα) expression levels. Knockdown of PFK or PGAM promoted p16 and p21 mRNA expression, but erythritol subsequently rescued pyruvate production. Overall, intraoral erythritol administration may prevent age-related oral mucosal diseases
Chromosomal Aberrations Caused by Cu K-shell Ionization in Hypoxic Cells Containing Cu-ATSM
The enhancement effect on chromosomal aberrations via selective X-ray energy absorption by Cu atoms in GM05389 normal fibroblast cells containing non-labeled copper(II)-diacetyl-bis(N4-methyl- thiosemicarbazone)(Cu-ATSM) was examined. The amounts of Cu-ATSM taken into cells were detected by PIXE analysis, and it was clarified that the amount of Cu atoms taken into hypoxic cells was about 2 or 3-times higher compared to that into normoxic cells. Radioisotope analysis with 64Cu-ATSM showed that 8.7% of all Cu atoms taken into a whole cell was distributed to the nucleus, and the remaining atoms to the cytoplasm in the cells. Irradiation with monochromatic X rays (CuK-H X rays) having an energy just above the Cu K-shell absorption edge on the hypoxic cells induced high yield of chromosomal aberrations, compared to that with X rays (CuK-L X rays) having an energy just below the Cu K-shell absorption edge. Enhanced chromosomal aberrations caused by Cu K-shell ionization or excitation was clearly observed in this study