154 research outputs found

    Coordinating cell cycle-regulated histone gene expression through assembly and function of the Histone Locus Body

    Get PDF
    Metazoan replication-dependent (RD) histone genes encode the only known cellular mRNAs that are not polyadenylated. These mRNAs end instead in a conserved stem-loop, which is formed by an endonucleolytic cleavage of the pre-mRNA. The genes for all 5 histone proteins are clustered in all metazoans and coordinately regulated with high levels of expression during S phase. Production of histone mRNAs occurs in a nuclear body called the Histone Locus Body (HLB), a subdomain of the nucleus defined by a concentration of factors necessary for histone gene transcription and pre-mRNA processing. These factors include the scaffolding protein NPAT, essential for histone gene transcription, and FLASH and U7 snRNP, both essential for histone pre-mRNA processing. Histone gene expression is activated by Cyclin E/Cdk2-mediated phosphorylation of NPAT at the G1-S transition. The concentration of factors within the HLB couples transcription with pre-mRNA processing, enhancing the efficiency of histone mRNA biosynthesis

    The Histone 3'-Terminal Stem-Loop-Binding Protein Enhances Translation through a Functional and Physical Interaction with Eukaryotic Initiation Factor 4G (eIF4G) and eIF3

    Get PDF
    Metazoan cell cycle-regulated histone mRNAs are unique cellular mRNAs in that they terminate in a highly conserved stem-loop structure instead of a poly(A) tail. Not only is the stem-loop structure necessary for 3'-end formation but it regulates the stability and translational efficiency of histone mRNAs. The histone stem-loop structure is recognized by the stem-loop-binding protein (SLBP), which is required for the regulation of mRNA processing and turnover. In this study, we show that SLBP is required for the translation of mRNAs containing the histone stem-loop structure. Moreover, we show that the translation of mRNAs ending in the histone stem-loop is stimulated in Saccharomyces cerevisiae cells expressing mammalian SLBP. The translational function of SLBP genetically required eukaryotic initiation factor 4E (eIF4E), eIF4G, and eIF3, and expressed SLBP coisolated with S. cerevisiae initiation factor complexes that bound the 5' cap in a manner dependent on eIF4G and eIF3. Furthermore, eIF4G coimmunoprecipitated with endogenous SLBP in mammalian cell extracts and recombinant SLBP and eIF4G coisolated. These data indicate that SLBP stimulates the translation of histone mRNAs through a functional interaction with both the mRNA stem-loop and the 5' cap that is mediated by eIF4G and eIF3

    TUT7 catalyzes the uridylation of the 3′ end for rapid degradation of histone mRNA

    Get PDF
    The replication-dependent histone mRNAs end in a stem–loop instead of the poly(A) tail present at the 3′ end of all other cellular mRNAs. Following processing, the 3′ end of histone mRNAs is trimmed to 3 nucleotides (nt) after the stem–loop, and this length is maintained by addition of nontemplated uridines if the mRNA is further trimmed by 3′hExo. These mRNAs are tightly cell-cycle regulated, and a critical regulatory step is rapid degradation of the histone mRNAs when DNA replication is inhibited. An initial step in histone mRNA degradation is digestion 2–4 nt into the stem by 3′hExo and uridylation of this intermediate. The mRNA is then subsequently degraded by the exosome, with stalled intermediates being uridylated. The enzyme(s) responsible for oligouridylation of histone mRNAs have not been definitively identified. Using high-throughput sequencing of histone mRNAs and degradation intermediates, we find that knockdown of TUT7 reduces both the uridylation at the 3′ end as well as uridylation of the major degradation intermediate in the stem. In contrast, knockdown of TUT4 did not alter the uridylation pattern at the 3′ end and had a small effect on uridylation in the stem–loop during histone mRNA degradation. Knockdown of 3′hExo also altered the uridylation of histone mRNAs, suggesting that TUT7 and 3′hExo function together in trimming and uridylating histone mRNAs

    Formation of the 3′ end of histone mRNA: Getting closer to the end

    Get PDF
    Nearly all eukaryotic mRNAs end with a poly (A) tail that is added to their 3’ end by the ubiquitous cleavage/polyadenylation machinery. The only known exception to this rule are metazoan replication dependent histone mRNAs, which end with a highly conserved stem-loop structure. This distinct 3’ end is generated by specialized 3’end processing machinery that cleaves histone pre-mRNAs 4–5 nucleotides downstream of the stem-loop and consists of the U7 small nuclear RNP (snRNP) and number of protein factors. Recently, the U7 snRNP has been shown to contain a unique Sm core that differs from that of the spliceosomal snRNPs, and an essential heat labile processing factor has been identified as symplekin. In addition, cross-linking studies have pinpointed CPSF-73 as the endonuclease, which catalyzes the cleavage reaction. Thus, many of the critical components of the 3’ end processing machinery are now identified. Strikingly, this machinery is not as unique as initially thought but contains a number of factors involved in cleavage/polyadenylation, suggesting that the two mechanisms have a common evolutionary origin. The greatest challenge that lies ahead is to determine how all these factors interact with each other to form a catalytically competent processing complex capable of cleaving histone pre-mRNAs

    Novel localization and possible functions of cyclin E in early sea urchin development

    Get PDF
    In somatic cells, cyclin E-cdk2 activity oscillates during the cell cycle and is required for the regulation of the G1/S transition. Cyclin E and its associated kinase activity remain constant throughout early sea urchin embryogenesis, consistent with reports from studies using several other embryonic systems. Here we have expanded these studies and show that cyclin E rapidly and selectively enters the sperm head after fertilization and remains concentrated in the male pronucleus until pronuclear fusion, at which time it disperses throughout the zygotic nucleus. We also show that cyclin E is not concentrated at the centrosomes but is associated with condensed chromosomes throughout mitosis for at least the first four cell cycles. Isolated mitotic spindles are enriched for cyclin E and cdk2, which are localized to the chromosomes. The chromosomal cyclin E is associated with active kinase during mitosis. We propose that cyclin E may play a role in the remodeling of the sperm head and re-licensing of the paternal genome after fertilization. Furthermore, cyclin E does not need to be degraded or dissociated from the chromosomes during mitosis; instead, it may be required on chromosomes during mitosis to immediately initiate the next round of DNA replication

    Translation Regulation and Proteasome Mediated Degradation Cooperate to Keep Stem-Loop Binding Protein Low in G1-Phase: REGULATION OF SLBP EXPRESSION IN G1-PHASE

    Get PDF
    Histone mRNA levels are cell cycle regulated, and the major regulatory steps are at the posttranscriptional level. A major regulatory mechanism is S- phase restriction of Stem-loop binding protein (SLBP) which binds to the 3′ end of histone mRNA and participates in multiple steps of histone mRNA metabolism, including 3′ end processing, translation and regulation of mRNA stability. SLBP expression is cell cycle regulated without significant change in its mRNA level. SLBP expression is low in G1 until just before S phase where it functions and at the end of S phase SLBP is degraded by proteasome complex depending on phosphorylations on Thr 60 and Thr61. Here using synchronized HeLa cells we showed that SLBP production rate is low in early G1 and recovers back to S phase level somewhere between early and mid-G1. Further, we showed that SLBP is unstable in G1 due to proteasome mediated degradation as a novel mechanism to keep SLBP low in G1. Finally, the S/G2 stable mutant form of SLBP is degraded by proteasome in G1, indicating that the SLBP degradation mechanism in G1 is independent of the previously identified S/G2 degradation mechanism. In conclusion, as a mechanism to limit histone production to S phase, SLBP is kept low in G1 phase due to cooperative action of translation regulation and proteasome mediated degradation which is independent of previously known S/G2 degradation

    The Polyadenylation Factor CPSF-73 Is Involved in Histone-Pre-mRNA Processing

    Get PDF
    During 3' end processing, histone pre-mRNAs are cleaved 5 nucleotides after a conserved stem loop by an endonuclease dependent on the U7 small nuclear ribonucleoprotein (snRNP). The upstream cleavage product corresponds to the mature histone mRNA, while the downstream product is degraded by a 5'-3' exonuclease, also dependent on the U7 snRNP. To identify the two nuclease activities, we carried out UV-crosslinking studies using both the complete RNA substrate and the downstream cleavage product, each containing a single radioactive phosphate and a phosphorothioate modification at the cleavage site. We detected a protein migrating at 85 kDa that crosslinked to each substrate in a U7-dependent manner. Immunoprecipitation experiments identified this protein as CPSF-73, a known component of the cleavage/polyadenylation machinery. These studies suggest that CPSF-73 is both the endonuclease and 5'-3' exonuclease in histone-pre-mRNA processing and reveal an evolutionary link between 3' end formation of histone mRNAs and polyadenylated mRNAs

    Coordinate regulation of histone mRNA metabolism and DNA replication: Cyclin A/cdk1 is involved in inactivation of histone mRNA metabolism and DNA replication at the end of S phase

    Get PDF
    S phase is characterized by the replication of DNA and assembly of chromatin. This requires the synthesis of large amounts of histone proteins to package the newly replicated DNA. Histone mRNAs are the only mRNAs that do not have polyA tails, ending instead in a conserved stemloop sequence. The stemloop binding protein (SLBP) that binds the 3′ end of histone mRNA is cell cycle regulated and SLBP is required in all steps of histone mRNA metabolism. Activation of cyclin E/cdk2 prior to entry into S-phase is critical for initiation of DNA replication and histone mRNA accumulation. At the end of S phase SLBP is rapidly degraded as a result of phosphorylation of SLBP by cyclin A/cdk1 and CK2 effectively shutting off histone mRNA biosynthesis. E2F1, which is required for expression of many S-phase genes, is regulated in parallel with SLBP and its degradation also requires a cyclin binding site, suggesting that it may also be regulated by the same pathway. It is likely that activation of cyclin A/cdk1 helps inhibit both DNA replication and histone mRNA accumulation, marking the end of S phase and entry into G2-phase

    A Core Complex of CPSF73, CPSF100, and Symplekin May Form Two Different Cleavage Factors for Processing of Poly(A) and Histone mRNAs

    Get PDF
    Metazoan histone mRNAs are unique: their pre-mRNAs contain no introns and the mRNAs are not polyadenylated ending instead in a conserved stem-loop structure. In Drosophila, canonical poly(A) signals are located downstream of the normal cleavage site of each histone gene, and are utilized when histone 3’end formation is inhibited. Here we define a sub-complex of poly(A) factors required for histone pre-mRNA processing. We demonstrate that Symplekin, CPSF73 and CPSF100 are present in a stable complex and interact with histone specific processing factors. We use chromatin immunoprecipitation to show that Symplekin and CPSF73, but not CstF50, cotranscriptionally associate with histone genes. Depletion of SLBP recruits CstF50 to histone genes. Knockdown of CPSF160 or CstF64 downregulates Symplekin but does not affect histone pre-mRNA processing or association of Symplekin with the histone locus. These results suggest that a common core cleavage factor is required for processing of histone and polyadenylated pre-mRNAs

    Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail

    Get PDF
    The canonical histone proteins are encoded by replication-dependent genes and must rapidly reach high levels of expression during S phase. In metazoans the genes that encode these proteins produce mRNAs that, instead of being polyadenylated, contain a unique 3' end structure. By contrast, the synthesis of the variant, replication-independent histones, which are encoded by polyadenylated mRNAs, persists outside of S phase. Accurate positioning of both histone types in chromatin is essential for proper transcriptional regulation, the demarcation of heterochromatic boundaries and the epigenetic inheritance of gene expression patterns. Recent results suggest that the coordinated synthesis of replication-dependent and variant histone mRNAs is achieved by signals that affect formation of the 3' end of the replication-dependent histone mRNAs
    • …
    corecore