20 research outputs found

    An application of data-driven analysis in road tunnels monitoring

    Get PDF
    In order to comply with the minimum safety requirements imposed by the Directive 2004/54/EC it is of paramount mportance to correctly manage the operation and maintenance of road tunnels. This research describes how Artificial Intelligence techniques can play a supportive role both for maintenance operators in monitoring tunnels and for safety managers in operation. It is possible to extract relevant information from large volumes of data from sensor equipment in an efficient, fast, dynamic and adaptive way and make it immediately usable by those who manage machinery and servicesto aid quick decisions. Carrying out an analysis based on sensors in motorway tunnels, represents an important technological innovation, which would simplify tunnels management activities and therefore the detection of any possible deterioration, while keeping the risk within tolerance limits. The idea involves the creation of an algorithm for the detection of faults by acquiring data in real time from the sensors of tunnel sub-systems and using them to help identify the service state of the tunnel. The AI models are trained on a period of 6 months with one hour time series granularity measured on a road tunnel part of the Italian motorway systems. The verification has been done with reference to a number of recorded sensor faults

    Mitochondrial GTP metabolism controls reproductive aging in C. elegans

    Get PDF
    Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP-but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health

    TFEB regulates lysosomal proteostasis

    Get PDF
    Loss-of-function diseases are often caused by destabilizing mutations that lead to protein misfolding and degradation. Modulating the innate protein homeostasis (proteostasis) capacity may lead to rescue of native folding of the mutated variants, thereby ameliorating the disease phenotype. In lysosomal storage disorders (LSDs), a number of highly prevalent alleles have missense mutations that do not impair the enzyme's catalytic activity but destabilize its native structure, resulting in the degradation of the misfolded protein. Enhancing the cellular folding capacity enables rescuing the native, biologically functional structure of these unstable mutated enzymes. However, proteostasis modulators specific for the lysosomal system are currently unknown. Here, we investigate the role of the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and function, in modulating lysosomal proteostasis in LSDs. We show that TFEB activation results in enhanced folding, trafficking and lysosomal activity of a severely destabilized glucocerebrosidase (GC) variant associated with the development of Gaucher disease (GD), the most common LSD. TFEB specifically induces the expression of GC and of key genes involved in folding and lysosomal trafficking, thereby enhancing both the pool of mutated enzyme and its processing through the secretory pathway. TFEB activation also rescues the activity of a β-hexosaminidase mutant associated with the development of another LSD, Tay–Sachs disease, thus suggesting general applicability of TFEB-mediated proteostasis modulation to rescue destabilizing mutations in LSDs. In summary, our findings identify TFEB as a specific regulator of lysosomal proteostasis and suggest that TFEB may be used as a therapeutic target to rescue enzyme homeostasis in LSDs

    Overview and recommendations for the application of digital PCR

    Get PDF
    The digital Polymerase Chain Reaction (dPCR), for the detection and absolute quantification of DNA, is a relatively new technique but its application in analytical laboratories is steadily increasing. In contrast to quantitative real-time PCR, DNA (fragments) can be quantified without the need for standard curves. Using dPCR, the PCR mix containing the (target) DNA is partitioned – depending on the device used – currently into a maximum of 10,000,000 small compartments with a volume as low as a few picoliters. These can be either physically distinct compartments on a chip (referred to as chamber-based digital PCR [cdPCR]), or these compartments correspond to water-in-oil droplets (referred to as droplet digital [ddPCR]). Common to both approaches, once PCR has been carried out simultaneously in all compartments/droplets, the number of positive and negative signals for each partition is counted by fluorescence measurement. With this technique, an absolute quantification of DNA copy numbers can be performed with high precision and trueness, even for very low DNA copy numbers. Furthermore, dPCR is considered less susceptible than qPCR to PCR inhibitory substances that can be co-extracted during DNA extraction from different sources. Digital PCR has already been applied in various fields, for example for the detection and quantification of GMOs, species (animals, plants), human diseases, food viruses and bacteria including pathogens. When establishing dPCR in a laboratory, different aspects have to be considered. These include, but are not limited to, the adjustment of the type of the PCR master mix used, optimised primer and probe concentrations and signal separation of positive and negative compartments. This document addresses these and other aspects and provides recommendations for the transfer of existing real-time PCR methods into a dPCR format.JRC.F.5-Food and Feed Complianc

    Managing hyponatremia in lung cancer: latest evidence and clinical implications

    No full text
    Hyponatremia is the most common electrolyte disorder in lung cancer patients. This condition may be related to many causes including incidental medications, concurrent diseases and side effects of antineoplastic treatments or the disease itself. Although not frequently life-threatening, it is usually associated with prolonged hospitalization, delays in scheduled chemotherapy, worsening of patient performance status and quality of life and may also negatively affect treatment response and survival. Most of the available data focus on thoracic tumors, especially small-cell lung cancer (SCLC), where hyponatremia is frequently related to the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). Few studies specifically focus on non-small cell lung cancer (NSCLC) patients. Hyponatremia treatment needs to be personalized based on severity and duration of sodium serum reduction, extracellular fluid volume and etiology. However, literature data highlight the importance of early correction of the serum concentration levels. To achieve this the main options are fluid restriction, hypertonic saline, loop diuretics, isotonic saline, tolvaptan and urea. The aim of this review is to analyze the role of hyponatremia in lung cancer patients, evaluating causes, diagnosis, management and clinical implications

    Ceria Nanoparticles Stabilized by Organic Surface Coatings Activate the Lysosome-Autophagy System and Enhance Autophagic Clearance

    No full text
    Cerium oxide nanoparticles (nanoceria) are widely used in a variety of industrial applications including UV filters and catalysts. The expanding commercial scale production and use of ceria nanoparticles have inevitably increased the risk of release of nanoceria into the environment as well as the risk of human exposure. The use of nanoceria in biomedical applications is also being currently investigated because of its recently characterized antioxidative properties. In this study, we investigated the impact of ceria nanoparticles on the lysosome-autophagy system, the main catabolic pathway that is activated in mammalian cells upon internalization of exogenous material. We tested a battery of ceria nanoparticles functionalized with different types of biocompatible coatings (<i>N</i>-acetylglucosamine, polyethylene glycol and polyvinylpyrrolidone) expected to have minimal effect on lysosomal integrity and function. We found that ceria nanoparticles promote activation of the transcription factor EB, a master regulator of lysosomal function and autophagy, and induce upregulation of genes of the lysosome-autophagy system. We further show that the array of differently functionalized ceria nanoparticles tested in this study enhance autophagic clearance of proteolipid aggregates that accumulate as a result of inefficient function of the lysosome-autophagy system. This study provides a mechanistic understanding of the interaction of ceria nanoparticles with the lysosome-autophagy system and demonstrates that ceria nanoparticles are activators of autophagy and promote clearance of autophagic cargo. These results provide insights for the use of nanoceria in biomedical applications, including drug delivery. These findings will also inform the design of engineered nanoparticles with safe and precisely controlled impact on the environment and the design of nanotherapeutics for the treatment of diseases with defective autophagic function and accumulation of lysosomal storage material

    Testing the interaction between analytical modules: an example with Roundup Ready<sup>® </sup>soybean line GTS 40-3-2

    No full text
    Abstract Background The modular approach to analysis of genetically modified organisms (GMOs) relies on the independence of the modules combined (i.e. DNA extraction and GM quantification). The validity of this assumption has to be proved on the basis of specific performance criteria. Results An experiment was conducted using, as a reference, the validated quantitative real-time polymerase chain reaction (PCR) module for detection of glyphosate-tolerant Roundup Ready® GM soybean (RRS). Different DNA extraction modules (CTAB, Wizard and Dellaporta), were used to extract DNA from different food/feed matrices (feed, biscuit and certified reference material [CRM 1%]) containing the target of the real-time PCR module used for validation. Purity and structural integrity (absence of inhibition) were used as basic criteria that a DNA extraction module must satisfy in order to provide suitable template DNA for quantitative real-time (RT) PCR-based GMO analysis. When performance criteria were applied (removal of non-compliant DNA extracts), the independence of GMO quantification from the extraction method and matrix was statistically proved, except in the case of Wizard applied to biscuit. A fuzzy logic-based procedure also confirmed the relatively poor performance of the Wizard/biscuit combination. Conclusions For RRS, this study recognises that modularity can be generally accepted, with the limitation of avoiding combining highly processed material (i.e. biscuit) with a magnetic-beads system (i.e. Wizard).</p

    Streptococcus dysgalactiae subsp. equisimilis: two cases of tonsillitis

    No full text
    We described two case reports of S. dysgalactiae subsp. equisimilis tonsillitis occurred from January 2005 to January 2007, among patients who come to our observation during these two years. These patients are paradigmatic of some conditions: adult age, absence of underlying diseases, outbreak of similar pharyngo-tonsillar sympyomatology, unsuccessful oral penicillin therapy, isolation of S. dysgalactiae subsp. equisimilis from throat swab, complete recovery after oral beta-lattamic antibiotic therapy, but total clearance of the microorganism only after oral macrolides administrations. Thus, the intracellular localization of S. dysgalactiae subsp. equismilis, could be in charge of the failure of beta-lattamic antibiotics therapy

    Isolation of multidrug-resistant Enterobacter cloacae and comparison among clavulanate-tazobactam and sulbactam-synergy by using a double-disk synergy test

    No full text
    False negative results of double-disk synergy test with Enterobacter cloacae are common, as AmpC-enzymes may mask ESBLs elaboration. We increased the sensitivity of the method by using both clavulanate- and tazobactam/sulbactam; hence, we suggest to use all the three inhibitors to screen ESBLs in AmpC ß-lactamases producing organisms
    corecore