1,464 research outputs found

    Electronic states and magnetic structure at the Co3O4 (110) surface: a first principles study

    Full text link
    Tricobalt tetraoxide (Co3O4) is an important catalyst and Co3O4(110) is a frequently exposed surface in Co3O4 nanomaterials. We employed Density-functional theory with on-site Coulomb repulsion U term to study the atomic structures, energetics, magnetic and electronic properties of the two possible terminations, A and B, of this surface. These calculations predict A as the stable termination in a wide range of oxygen chemical potentials, consistent with recent experimental observations. The Co3+ ions do not have a magnetic moment in the bulk, but become magnetic at the surface, which leads to surface magnetic orderings different from the one in the bulk. Surface electronic states are present in the lower half of the bulk band gap and cause partial metallization of both surface terminations. These states are responsible for the charge compensation mechanism stabilizing both polar terminations. The computed critical thickness for polarity compensation is 4 layers

    An ab-initio converse NMR approach for pseudopotentials

    Full text link
    We extend the recently developed converse NMR approach [T. Thonhauser, D. Ceresoli, A. Mostofi, N. Marzari, R. Resta, and D. Vanderbilt, J. Chem. Phys. \textbf{131}, 101101 (2009)] such that it can be used in conjunction with norm-conserving, non-local pseudopotentials. This extension permits the efficient ab-initio calculation of NMR chemical shifts for elements other than hydrogen within the convenience of a plane-wave pseudopotential approach. We have tested our approach on several finite and periodic systems, finding very good agreement with established methods and experimental results.Comment: 11 pages, 2 figures, 4 tables; references expande

    Mechanism of ferroelectric instabilities in non d^0 perovskites: LaCrO_3 versus CaMnO_3

    Full text link
    The incompatibility of partial d occupation on the perovskite B-site with the standard charge transfer mechanism for ferroelectricity has been a central paradigm in multiferroics research. Nevertheless, it was recently shown by density functional theory calculations that CaMnO_3 exhibits a polar instability that even dominates over the octahedral tilting for slightly enlarged unit cell volume. Here, we present similar calculations for LaCrO_3, which has the same d^3 B-site electron configuration as CaMnO_3. We find that LaCrO_3 exhibits a very similar, albeit much weaker, polar instability as CaMnO_3. In addition, while the Born effective charge (BEC) of the Mn^{4+} cation in CaMnO_3 is highly anomalous, the BEC of Cr^{3+} in LaCrO_3 is only slightly enhanced. By decomposing the BECs into contributions of individual Wannier functions we show that the ferroelectric instabilities in both systems can be understood in terms of charge transfer between TM d and O p states, analogously to the standard d^0 perovskite ferroelectrics.Comment: 6 pages, 4 figures, 2 table

    Towards First-principles Electrochemistry

    Full text link
    Chemisorbed molecules at a fuel cell electrode are a very sensitive probe of the surrounding electrochemical environment, and one that can be accurately monitored with different spectroscopic techniques. We develop a comprehensive electrochemical model to study molecular chemisorption at either constant charge or fixed applied voltage, and calculate from first principles the voltage dependence of vibrational frequencies -- the vibrational Stark effect -- for CO adsorbed on close-packed platinum electrodes. The predicted vibrational Stark slopes are found to be in very good agreement with experimental electrochemical spectroscopy data, thereby resolving previous controversies in the quantitative interpretation of in-situ experiments and elucidating the relation between canonical and grand-canonicaldescriptions of vibrational surface phenomena.Comment: 10 pages, 2 figure

    A Peculiar Family of Jupiter Trojans: the Eurybates

    Get PDF
    The Eurybates family is a compact core inside the Menelaus clan, located in the L4 swarm of Jupiter Trojans. Fornasier et al. (2007) found that this family exhibits a peculiar abundance of spectrally flat objects, similar to Chiron-like Centaurs and C-type main belt asteroids. On the basis of the visible spectra available in literature, Eurybates family's members seemed to be good candidates for having on their surfaces water/water ice or aqueous altered materials. To improve our knowledge of the surface composition of this peculiar family, we carried out an observational campaign at the Telescopio Nazionale Galileo (TNG), obtaining near-infrared spectra of 7 members. Our data show a surprisingly absence of any spectral feature referable to the presence of water, ices or aqueous altered materials on the surface of the observed objects. Models of the surface composition are attempted, evidencing that amorphous carbon seems to dominate the surface composition of the observed bodies and some amount of silicates (olivine) could be present.Comment: 23 pages, 2 figures, paper accepted for publication in Icaru

    Electrosorption at metal surfaces from first principles

    No full text
    Electrosorption of solvated species at metal electrodes is a most fundamental class of processes in interfacial electrochemistry. Here, we use its sensitive dependence on the electric double layer to assess the performance of ab initio thermodynamics approaches increasingly used for the first-principles description of electrocatalysis. We show analytically that computational hydrogen electrode calculations at zero net-charge can be understood as a first-order approximation to a fully grand canonical approach. Notably, higher-order terms in the applied potential caused by the charging of the double layer include contributions from adsorbate-induced changes in the work function and in the interfacial capacitance. These contributions are essential to yield prominent electrochemical phenomena such as non-Nernstian shifts of electrosorption peaks and non-integer electrosorption valencies. We illustrate this by calculating peak shifts for H on Pt electrodes and electrosorption valencies of halide ions on Ag electrodes, obtaining qualitative agreement with experimental data already when considering only second order terms. The results demonstrate the agreement between classical electrochemistry concepts and a first-principles fully grand canonical description of electrified interfaces and shed new light on the widespread computational hydrogen electrode approach

    Transition state method and Wannier functions

    Full text link
    We propose a computational scheme for materials where standard Local Density Approximation (LDA) fails to produce a satisfactory description of excitation energies. The method uses Slater's "transition state" approximation and Wannier functions basis set. We define a correction to LDA functional in such a way that its variation produces one-electron energies for Wannier functions equal to the energies obtained in "transition state" constrained LDA calculations. In the result eigenvalues of the proposed functional could be interpreted as excitation energies of the system under consideration. The method was applied to MgO, Si, NiO and BaBiO3_3 and gave an improved agreement with experimental data of energy gap values comparing with LDA.Comment: 13 pages, 6 figures, 1 tabl
    • …
    corecore