5 research outputs found
Contractions of Low-Dimensional Lie Algebras
Theoretical background of continuous contractions of finite-dimensional Lie
algebras is rigorously formulated and developed. In particular, known necessary
criteria of contractions are collected and new criteria are proposed. A number
of requisite invariant and semi-invariant quantities are calculated for wide
classes of Lie algebras including all low-dimensional Lie algebras.
An algorithm that allows one to handle one-parametric contractions is
presented and applied to low-dimensional Lie algebras. As a result, all
one-parametric continuous contractions for the both complex and real Lie
algebras of dimensions not greater than four are constructed with intensive
usage of necessary criteria of contractions and with studying correspondence
between real and complex cases.
Levels and co-levels of low-dimensional Lie algebras are discussed in detail.
Properties of multi-parametric and repeated contractions are also investigated.Comment: 47 pages, 4 figures, revised versio
Realizations of Real Low-Dimensional Lie Algebras
Using a new powerful technique based on the notion of megaideal, we construct
a complete set of inequivalent realizations of real Lie algebras of dimension
no greater than four in vector fields on a space of an arbitrary (finite)
number of variables. Our classification amends and essentially generalizes
earlier works on the subject.
Known results on classification of low-dimensional real Lie algebras, their
automorphisms, differentiations, ideals, subalgebras and realizations are
reviewed.Comment: LaTeX2e, 39 pages. Essentially exetended version. Misprints in
Appendix are correcte