5 research outputs found

    Contractions of Low-Dimensional Lie Algebras

    Full text link
    Theoretical background of continuous contractions of finite-dimensional Lie algebras is rigorously formulated and developed. In particular, known necessary criteria of contractions are collected and new criteria are proposed. A number of requisite invariant and semi-invariant quantities are calculated for wide classes of Lie algebras including all low-dimensional Lie algebras. An algorithm that allows one to handle one-parametric contractions is presented and applied to low-dimensional Lie algebras. As a result, all one-parametric continuous contractions for the both complex and real Lie algebras of dimensions not greater than four are constructed with intensive usage of necessary criteria of contractions and with studying correspondence between real and complex cases. Levels and co-levels of low-dimensional Lie algebras are discussed in detail. Properties of multi-parametric and repeated contractions are also investigated.Comment: 47 pages, 4 figures, revised versio

    Realizations of Real Low-Dimensional Lie Algebras

    Full text link
    Using a new powerful technique based on the notion of megaideal, we construct a complete set of inequivalent realizations of real Lie algebras of dimension no greater than four in vector fields on a space of an arbitrary (finite) number of variables. Our classification amends and essentially generalizes earlier works on the subject. Known results on classification of low-dimensional real Lie algebras, their automorphisms, differentiations, ideals, subalgebras and realizations are reviewed.Comment: LaTeX2e, 39 pages. Essentially exetended version. Misprints in Appendix are correcte
    corecore