3 research outputs found

    Effect of Ethanolic Leaf Extract of Senna Fistula on some Haematological Parameters, Lipid Profile and Oxidative Stress in Alloxan-induced Diabetic Rats

    Get PDF
    Summary: Increasing evidence in both experimental and clinical studies suggests that oxidative stress plays a major role in the pathogenesis of both types of diabetes mellitus. The disease is also known to adversely affect some haematological parameters and cause dyslipidemia. This study was designed to investigate the effect of chronic administration of ethanolic leave extract of Senna fistula on haematological values, oxidative stress and dyslipidemia in experimental diabetic rats. Twenty-four albino rats weighing 120-150 g were divided into 4 experimental groups of six rats each; control, diabetic untreated, diabetic treated with glibenclamide and diabetic treated with 100 mg/kg b.w of Senna fistula. Diabetes was induced by 100 mg/kg b.w. of alloxan monohydrates. The control and diabetic groups received normal saline while the diabetic treated groups were administered with 5mg/kg and 100mg/kg body weight of glibenclamide and ethanolic leaves extract of Senna fistula respectively for 28 days. At the end of experimental period blood samples were taken from the animals for the determination of Red blood cells (RBC), packed cell volume (PCV), Haemoglobin concentration (Hb), total cholesterol, triglycerides (TG), high density lipoprotein (HDL), low density lipoprotein (LDL) and malondialdehyde (MDA), marker of lipid peroxidation. The result showed that in diabetic rats, PCV, RBC and Hb were decreased but the application of the extract increased the parameters (P<0.05, n=6). Similarly, the result showed a significant increase in total cholesterol, TG and LDL level of the diabetic group when compared with the control, glibenclamide and extract treated diabetic groups, however, there was no significant difference in HDL level in all the groups. The result also showed a significant decrease in elevated MDA (P<0.05, n=6) of diabetic treated rats. These findings suggest that ethanolic leaves extract of Senna fistula might improve the diabetic induced disturbances of some haematological parameters, reduces the plasma lipid imbalances and decreases the production of free radicals associated with diabetes.Keywords: Glibenclamide, Senna Fistula, Diabetes Mellitus, Packed Cell Volume, Malondialdehyd

    Inhibition of dipeptidyl peptidase-4 averts Free Fatty acids deposition in the hearts of oral estrogen-progestin contraceptive-induced hyperinsulinemic female rats

    No full text
    Free fatty acids deposition in non-adipose tissues such as the heart is a characteristic of insulin resistant states which features hyperinsulinemia and dipeptidyl peptidase-4 (DPP-4) activation. Estrogen-progestin oral contraceptives (OC) treatment reportedly increased DPP-4 activity in rat tissue and DPP-4 inhibitors have anti-diabetic and anti-inflammatory properties. This study aims to investigate the effects of DPP-4 inhibition on cardiac free fatty acid (FFA) deposition in estrogen-progestin treated female rats.From our data, estrogen-progestin OC exposure in female rats led to elevated plasma insulin, cardiac DPP-4 activity, FFA and triglyceride (TG) accumulation, Triglyceride/high density lipoprotein (TG/HDL) ratio, adenosine deaminase/xanthine oxidase/uric acid pathway, lipid peroxidation, glycogen synthase activity and alanine phosphatase whereas cardiac glucose-6-phosphate dehydrogenase, Na/K-ATPase and nitric oxide (NO) were decreased. However, DPP-4 inhibition resulted in decreased plasma insulin, cardiac DPP-4 activity, FFA, TG and TG/HDL-C ratio and alkaline phosphatase. These were accompanied by reduced adenosine deaminase/xanthine oxidase/uric acid (ADA/XO/UA) pathway, lipid peroxidation and augmented NO and Na/K-ATPase in estrogen-progestin OC-treated rats.DPP-4 inhibition attenuated cardiac lipid deposition accompanied by reduced activity in the ADA/XO/UA pathway in estrogen-progestin OC-treated female rats. DPP-4 is therefore a plausible therapeutic target in cardiometabolic disordersThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore