2 research outputs found
Crystal engineering of ionic cocrystals sustained by azolium···azole heterosynthons
Crystal engineering of multi-component molecular crystals, cocrystals, is a subject of growing interest, thanks in part to the potential utility of pharmaceutical cocrystals as drug substances with improved properties. Whereas molecular cocrystals (MCCs) are quite well studied from a design perspective, ionic cocrystals (ICCs) remain relatively underexplored despite there being several recently FDA-approved drug products based upon ICCs. Successful cocrystal design strategies typically depend on strong and directional noncovalent interactions between coformers, as exemplified by hydrogen bonds. Understanding of the hierarchy of such interactions is key to successful outcomes in cocrystal design. We herein address the crystal engineering of ICCs comprising azole functional groups, particularly imidazoles and triazoles, which are commonly encountered in biologically active molecules. Specifically, azoles were studied for their propensity to serve as coformers with strong organic (trifluoroacetic acid and p-toluenesulfonic acid) and inorganic (hydrochloric acid, hydrobromic acid and nitric acid) acids to gain insight into the hierarchy of NH+ ···N (azolium-azole) supramolecular heterosynthons. Accordingly, we combined data mining of the Cambridge Structural Database (CSD) with the structural characterization of 16 new ICCs (11 imidazoles, 4 triazoles, one imidazole-triazole). Analysis of the new ICCs and 66 relevant hits archived in the CSD revealed that supramolecular synthons between identical azole rings (A+B −A) are much more commonly encountered, 71, than supramolecular synthons between different azole rings (A+B −C), 11. The average NH+ ···N distance found in the new ICCs reported herein is 2.697(3) Å and binding energy calculations suggested that hydrogen bond strengths range from 31–46 kJ mol−1 . The azolium-triazole ICC (A+B −C) was obtained via mechanochemistry and differed from the other ICCs studied as there was no NH+ ···N hydrogen bonding. That the CNC angles in imidazoles and 1,2,4-triazoles are sensitive to protonation, the cationic forms having larger (approximately 4.4 degrees) values than comparable neutral rings, was used as a parameter to distinguish between protonated and neutral azole rings. Our results indicate that ICCs based upon azolium-azole supramolecular heterosynthons are viable targets, which has implications for the development of new azole drug substances with improved properties.</p
Highly selective p‑Xylene separation from mixtures of C8 aromatics by a nonporous molecular apohost
High and increasing production of separation of C8 aromatic isomers demands the development of purification methods that are efficient, scalable, and inexpensive, especially for p-xylene, PX, the largest volume C8 commodity. Herein, we report that 4-(1H-1,2,4-triazol-1-yl)-phenyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (TPBD), a molecular compound that can be prepared and scaled up via solid-state synthesis, exhibits exceptional PX selectivity over each of the other C8 isomers, o-xylene (OX), m-xylene (MX), and ethylbenzene (EB). The apohost or α form of TPBD was found to exhibit conformational polymorphism in the solid state enabled by rotation of its triazole and benzene rings. TPBD-αI and TPBD-αII are nonporous polymorphs that transformed to the same PX inclusion compound, TPBD-PX, upon contact with liquid PX. TPBD enabled highly selective capture of PX, as established by competitive slurry experiments involving various molar ratios in binary, ternary, and quaternary mixtures of C8 aromatics. Binary selectivity values for PX as determined by 1 H NMR spectroscopy and gas chromatography ranged from 22.4 to 108.4, setting new benchmarks for both PX/MX (70.3) and PX/EB (59.9) selectivity as well as close to benchmark selectivity for PX/OX (108.4). To our knowledge, TPBD is the first material of any class to exhibit such high across-the-board PX selectivity from quaternary mixtures of C8 aromatics under ambient conditions. Crystallographic and computational studies provide structural insight into the PX binding site in TPBD-PX, whereas thermal stability and capture kinetics were determined by variable-temperature powder X-ray diffraction and slurry tests, respectively. That TPBD offers benchmark PX selectivity and facile recyclability makes it a prototypal molecular compound for PX purification or capture under ambient condition</p