9 research outputs found

    Recent Advances in Multifunctional Reticular Framework Nanoparticles: A Paradigm Shift in Materials Science Road to a Structured Future

    No full text
    Highlights This review summarizes the quarter-century of reticular chemistry. Preparation strategies and characterization of reticular framework nanoparticles (RF-NPs) are systematically reviewed. Biomedicine, gas valorization, energy storage and other newer applications of RF-NPs are involved Future potential and challenges of RF-NPs are prospected

    Fabrication of branch-like Aph@LDH-MgO material through organic-inorganic hybrid conjugation for excellent anti-corrosion performance

    No full text
    Layered double hydroxides (LDH) frameworks have shown significant enhancement in stability and reusability, and their tailorable architecture brings new insight into the development of the next generation of hybrid materials, which attracted considerable attention in many fields over the years. One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition, which can accommodate a wide spectrum of potential anionic guests. This exceptional property makes the LDH system simple to adjust for various applications. However, most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems. In this study, LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation (PEO) treatment in the presence of ethylenediaminetetraacetic acid, thereby avoiding the use of hydrothermal autoclave conditions. This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly. An organic layer was fabricated on top of the LDH film using 4-Aminophenol (Aph) compound, resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance. At the molecular level, the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows. First, Localized orbit locator (LOL)-π isosurface, electrostatic potential (ESP) distribution, and average local ionization energy (ALIE) on the molecular surface were used to highlight localization region, reveal the favorable electrophilic and nucleophilic attacks, and clearly explore the type of interactions that occurred around interesting regions. Second, first-principles based on density functional theory (DFT) was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions. The experimental and computational analyses suggest that the high π-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings. This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance

    A Novel Coating System Based on Layered Double Hydroxide/HQS Hierarchical Structure for Reliable Protection of Mg Alloy: Electrochemical and Computational Perspectives

    No full text
    Growing research activity on layered double hydroxide (LDH)-based materials for novel applications has been increasing; however, promoting LDH layer growth and examining its morphologies without resorting to extreme pressure conditions remains a challenge. In the present study, we enhance LDH growth and morphology examination without extreme pressure conditions. By synthesizing Mg-Al LDH directly on plasma electrolytic oxidation (PEO)-treated Mg alloy surfaces and pores at ambient pressure, the direct synthesis was achieved feasibly without autoclave requirements, employing a suitable chelating agent. Additionally, enhancing corrosion resistance involved incorporating electron donor–acceptor compounds into a protective layer, with 8-Hydroxyquinoline-5-sulfonic acid (HQS) that helps in augmenting Mg alloy corrosion resistance through the combination of LDH ion-exchange ability and the organic layer. DFT simulations were used to explain the mutual interactions in the LDH system and provide a theoretical knowledge of the interfacial process at the molecular level

    Naproxen-Based Hydrazones as Effective Corrosion Inhibitors for Mild Steel in 1.0 M HCl

    No full text
    The corrosion-inhibiting performance of (E)-N’-(4-bromobenzylidene)-2-(6-methoxynaphthalen-2-yl) propanehydrazide (BPH) and (E)-N’-(4-(dimethylamino) benzylidene)-2-(6-methoxynaphthalen-2-yl) propanehydrazide (MPH) for mild steel (MS) in 1.0 M HCl was investigated using electrochemical methods, weight loss measurements, and scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscope (EDX) analysis. Raising the concentration of both inhibitors towards an optimal value of 5 × 10−3 M reduced the corrosion current density (icorr) and the corrosion rate of mild steel. The inhibitory effect of MPH, which showed the highest inhibition efficiency, was explored under a range of temperatures between 303 and 333 K. The inhibitory performance of both compounds significantly improved when the inhibitor concentration increased. The main result that flowed from potentiodynamic polarization (PDP) tests was that both compounds acted as mixed-type inhibitors, with a predominance cathodic effect. The adsorption of both compounds follows the Langmuir isotherm. SEM/EDX confirmed the excellent inhibition performance of tested compounds

    Unraveling Bonding Mechanisms and Electronic Structure of Pyridine Oximes on Fe(110) Surface: Deeper Insights from DFT, Molecular Dynamics and SCC-DFT Tight Binding Simulations

    No full text
    The development of corrosion inhibitors with outstanding performance is a never-ending and complex process engaged in by researchers, engineers and practitioners. The computational assessment of organic corrosion inhibitors’ performance is a crucial step towards the design of new task-specific materials. Herein, the electronic features, adsorption characteristics and bonding mechanisms of two pyridine oximes, namely 2-pyridylaldoxime (2POH) and 3-pyridylaldoxime (3POH), with the iron surface were investigated using molecular dynamics (MD), and self-consistent-charge density-functional tight-binding (SCC-DFTB) simulations. SCC-DFTB simulations revealed that the 3POH molecule can form covalent bonds with iron atoms in its neutral and protonated states, while the 2POH molecule can only bond with iron through its protonated form, resulting in interaction energies of −2.534, −2.007, −1.897, and −0.007 eV for 3POH, 3POH+, 2POH+, and 2POH, respectively. Projected density of states (PDOSs) analysis of pyridines–Fe(110) interactions indicated that pyridine molecules were chemically adsorbed on the iron surface. Quantum chemical calculations (QCCs) revealed that the energy gap and Hard and Soft Acids and Bases (HSAB) principles were efficient in predicting the bonding trend of the molecules investigated with an iron surface. 3POH had the lowest energy gap of 1.706 eV, followed by 3POH+ (2.806 eV), 2POH+ (3.121 eV), and 2POH (3.431 eV). In the presence of a simulated solution, MD simulation showed that the neutral and protonated forms of molecules exhibited a parallel adsorption mode on an iron surface. The excellent adsorption properties and corrosion inhibition performance of 3POH may be attributed to its low stability compared to 2POH molecules

    Mechanistic insights into methylene blue removal via olive stone-activated carbon: A study on surface porosity and characterization

    No full text
    Global attention is increasingly focused on the adverse health and environmental impacts of textile dyes, marking the necessity for effective and sustainable dye remediation strategies in industrial wastewater. This study introduces a novel, eco-friendly activated carbon produced from olive stones (OLS), a readily available by-product of the olive oil industry. The OLS was chemically activated with H3PO4 and KOH, creating two materials: OLS-P and OLS-K, respectively. These were then utilized as cost-effective adsorbents for the removal of methylene blue (MB) dye. The activated materials were characterized via X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), iodine number, and pHpzc analysis, with the zero-point charge determined as approximately pH 1 for OLS-P and pH 8 for OLS-K. Batch adsorption experiments conducted at various temperatures revealed that adsorption process followed the pseudo-second-order kinetic model and the Langmuir isotherm model. Temperature was found to significantly impact adsorption performance, with OLS-K demonstrating a substantial increase in adsorption capacity (qe) from 6.27 mg/g at 23˚C to 94.7 mg/g at 32 ˚C. Conversely, OLS-P displayed a decrease in qe from 16.78 mg/g at 23 ˚C to 3.67 mg/g at 32 ˚C as temperature increased. The study highlights the potential of KOH-treated olive stones as a promising, cost-efficient adsorbent for methylene blue remediation from wastewater

    Adsorption Mechanism of Eco-Friendly Corrosion Inhibitors for Exceptional Corrosion Protection of Carbon Steel: Electrochemical and First-Principles DFT Evaluations

    No full text
    In the present work, we represent two thiazolidinediones, namely (Z)-5-(4-methoxybenzylidene) thiazolidine-2,4-dione (MeOTZD) and (Z)-5-(4-methylbenzylidene) thiazolidine-2,4-dione (MeTZD), as corrosion inhibitors for carbon steel (CS) in 1.0 M HCl solution. Techniques for gravimetric methods, electrochemical measurements, and morphological characterization were used to conduct experimental evaluations. Additionally, calculations based on the fundamental principles of Density Functional Theory (DFT) were employed to simulate inhibitor–iron interactions. Experimental results indicated that investigated inhibitors can significantly enhance the corrosion resistance of CS, reaching a performance of 95% and 87% at 5 × 10−3 mol/L of MeOTZ and MeTZD, respectively. According to gravimetric and electrochemical experiments, inhibitor molecules obstruct corrosion reactions by adhering to the CS surface, which follows the Langmuir isotherm model. On the other hand, the morphological analysis showed a well-distinguished difference between unprotected and protected CS surfaces as a result of the inhibitors’ addition to HCl. Projected density of states and interaction energies obtained from first-principles DFT simulations indicate that the studied molecules form covalent bonds with iron atoms through charge transfer

    Adsorption Mechanism of Eco-Friendly Corrosion Inhibitors for Exceptional Corrosion Protection of Carbon Steel: Electrochemical and First-Principles DFT Evaluations

    No full text
    In the present work, we represent two thiazolidinediones, namely (Z)-5-(4-methoxybenzylidene) thiazolidine-2,4-dione (MeOTZD) and (Z)-5-(4-methylbenzylidene) thiazolidine-2,4-dione (MeTZD), as corrosion inhibitors for carbon steel (CS) in 1.0 M HCl solution. Techniques for gravimetric methods, electrochemical measurements, and morphological characterization were used to conduct experimental evaluations. Additionally, calculations based on the fundamental principles of Density Functional Theory (DFT) were employed to simulate inhibitor–iron interactions. Experimental results indicated that investigated inhibitors can significantly enhance the corrosion resistance of CS, reaching a performance of 95% and 87% at 5 × 10−3 mol/L of MeOTZ and MeTZD, respectively. According to gravimetric and electrochemical experiments, inhibitor molecules obstruct corrosion reactions by adhering to the CS surface, which follows the Langmuir isotherm model. On the other hand, the morphological analysis showed a well-distinguished difference between unprotected and protected CS surfaces as a result of the inhibitors’ addition to HCl. Projected density of states and interaction energies obtained from first-principles DFT simulations indicate that the studied molecules form covalent bonds with iron atoms through charge transfer

    Evaluation of 2-Mercaptobenzimidazole Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid

    No full text
    This research aimed to develop a better understanding of the corrosion inhibition of the mild steel in acidic medium by new organic molecules. For this purpose, two new compounds namely, 2,3-dihydrobenzo[4,5]imidazo[2,1-b]thiazole (2-BIT) and 3,4-dihydro-2H-benzo[4,5]imidazo[2,1-b]thiazole (3-BIT) were synthesized and evaluated for mild steel (MS) corrosion in HCl. Analyses were carried out using weight loss measurements, electrochemical techniques, and scanning electron microscope (SEM). The adsorption of inhibitors onto the steel surface follows the Langmuir adsorption model. Generally, results showed that the corrosion inhibition efficiency of the investigated molecules was found to increase with increased concentration of inhibitors. Electrochemical tests, i.e., electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) techniques, showed that the addition of our investigated inhibitors decreases the dissolution of the metal and generally act as mixed-type inhibitors. In addition, the influence of temperature (from 303 to 333 K) on the corrosion inhibition was studied, and the results demonstrated that with an increase in temperature, the inhibition efficiency decrease. SEM results confirmed that the inhibition process is due to a protective film that prevents corrosion. Similarly, the results showed that the inhibitory efficiencies reach 93% at 5 × 10−3 M in the case of inhibitor 3-BIT. These results revealed that this compound could effectively control and reduce the corrosion rate of mild steel in the corrosion test solution
    corecore