6 research outputs found

    Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes

    Get PDF
    Following an insult by both intrinsic and extrinsic pathways, complex cellular, and molecular interactions determine a successful recovery or inadequate repair of damaged tissue. The efficiency of this process is particularly important in the heart, an organ characterized by very limited regenerative and repair capacity in higher adult vertebrates. Cardiac insult is characteristically associated with fibrosis and heart failure, as a result of cardiomyocyte death, myocardial degeneration, and adverse remodeling. Recent evidence implies that resident non-cardiomyocytes, fibroblasts but also macrophages -pillars of the innate immunity- form part of the inflammatory response and decisively affect the repair process following a cardiac insult. Multiple studies in model organisms (mouse, zebrafish) of various developmental stages (adult and neonatal) combined with genetically engineered cell plasticity and differentiation intervention protocols -mainly targeting cardiac fibroblasts or progenitor cells-reveal particular roles of resident and recruited innate immune cells and their secretome in the coordination of cardiac repair. The interplay of innate immune cells with cardiac fibroblasts and cardiomyocytes is emerging as a crucial platform to help our understanding and, importantly, to allow the development of effective interventions sufficient to minimize cardiac damage and dysfunction after injury

    An initial blueprint for myogenic differentiation

    No full text
    We have combined genome-wide transcription factor binding and expression profiling to assemble a regulatory network controlling the myogenic differentiation program in mammalian cells. We identified a cadre of overlapping and distinct targets of the key myogenic regulatory factors (MRFs)—MyoD and myogenin—and Myocyte Enhancer Factor 2 (MEF2). We discovered that MRFs and MEF2 regulate a remarkably extensive array of transcription factor genes that propagate and amplify the signals initiated by MRFs. We found that MRFs play an unexpectedly wide-ranging role in directing the assembly and usage of the neuromuscular junction. Interestingly, these factors also prepare myoblasts to respond to diverse types of stress. Computational analyses identified novel combinations of factors that, depending on the differentiation state, might collaborate with MRFs. Our studies suggest unanticipated biological insights into muscle development and highlight new directions for further studies of genes involved in muscle repair and responses to stress and damage

    E2f3b plays an essential role in myogenic differentiation through isoform-specific gene regulation

    No full text
    Current models posit that E2F transcription factors can be divided into members that either activate or repress transcription, in part through collaboration with the retinoblastoma (pRb) tumor suppressor family. The E2f3 locus encodes E2f3a and E2f3b proteins, and available data suggest that they regulate cell cycle-dependent gene expression through opposing transcriptional activating and repressing activities in growing and quiescent cells, respectively. However, the role, if any, of E2F proteins, and in particular E2f3, in myogenic differentiation is not well understood. Here, we dissect the contributions of E2f3 isoforms and other activating and repressing E2Fs to cell cycle exit and differentiation by performing genome-wide identification of isoform-specific targets. We show that E2f3a and E2f3b target genes are involved in cell growth, lipid metabolism, and differentiation in an isoform-specific manner. Remarkably, using gene silencing, we show that E2f3b, but not E2f3a or other E2F family members, is required for myogenic differentiation, and that this requirement for E2f3b does not depend on pRb. Our functional studies indicate that E2f3b specifically attenuates expression of genes required to promote differentiation. These data suggest how diverse E2F isoforms encoded by a single locus can play opposing roles in cell cycle exit and differentiation

    Intermediate filaments in cardiomyopathy

    No full text
    corecore