20 research outputs found

    Wt1 functions in the development of germ cells in addition to somatic cell lineages of the testis

    Get PDF
    AbstractThe Wilms' tumor suppressor gene, Wt1, encodes a transcription factor critical for development of the urogenital system. To identify lineages within the developing urogenital system that have a cell-autonomous requirement for Wt1, chimeric mice were generated from Wt1-null ES cells. Males with large contributions of Wt1−/− cells showed hypoplastic and dysgenic testes, with seminiferous tubules lacking spermatogonia. Wt1-null cells contributed poorly to both somatic and germ cell lineages within the developing gonad, suggesting an unexpected role for Wt1 in germ cell development in addition to a role in the development of the somatic lineages of the gonad. Wt1 expression was detected in embryonic germ cells beginning at embryonic day 11.5 after migrating primordial germ cells (PGCs) have entered the gonad. Germ cells isolated from Wt1-null embryos showed impaired growth in culture, further demonstrating a role for Wt1 in germ cell proliferation or survival. Therefore, Wt1 plays important, and in some cases previously unrecognized, roles in multiple lineages during urogenital development

    Failure to ubiquitinate c-Met Leads to Hyperactivation of mTOR Signaling in a Mouse Model of Autosomal Dominant Polycystic Kidney Disease

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder that is caused by mutations at two loci, polycystin 1 (PKD1) and polycystin 2 (PKD2). It is characterized by the formation of multiple cysts in the kidneys that can lead to chronic renal failure. Previous studies have suggested a role for hyperactivation of mammalian target of rapamycin (mTOR) in cystogenesis, but the etiology of mTOR hyperactivation has not been fully elucidated. In this report we have shown that mTOR is hyperactivated. in Pkd1-null mouse cells due to failure of the HGF receptor c-Met to be properly ubiquitinated and subsequently degraded after stimulation by HGF. In Pkd1-null cells, Casitas B-lineage lymphoma (c-Cb1), an E3-ubiquitin ligase for c-Met, was sequestered in the Golgi apparatus with alpha(3)beta(1) integrin, resulting in the inability to ubiquitinate c-Met. Treatment of mouse Pkd1-null cystic kidneys in organ culture with a c-Met pharmacological inhibitor resulted in inhibition of mTOR activity and blocked cystogenesis in this mouse model of ADPKD. We therefore suggest that blockade of c-Met is a potential novel therapeutic approach to the treatment of ADPKD

    Genome-Wide Analysis of Wilms' Tumor 1-Controlled Gene Expression in Podocytes Reveals Key Regulatory Mechanisms

    No full text
    The transcription factor Wilms' tumor suppressor 1 (WT1) is key to podocyte development and viability; however, WT1 transcriptional networks in podocytes remain elusive. We provide a comprehensive analysis of the genome-wide WT1 transcriptional network in podocytes in vivo using chromatin immunoprecipitation followed by sequencing (ChIPseq) and RNA sequencing techniques. Our data show a specific role for WT1 in regulating the podocyte-specific transcriptome through binding to both promoters and enhancers of target genes. Furthermore, we inferred a podocyte transcription factor network consisting of WT1, LMX1B, TCF21, Fox-class and TEAD family transcription factors, and MAFB that uses tissue-specific enhancers to control podocyte gene expression. In addition to previously described WT1-dependent target genes, ChIPseq identified novel WT1-dependent signaling systems. These targets included components of the Hippo signaling system, underscoring the power of genome-wide transcriptional-network analyses. Together, our data elucidate a comprehensive gene regulatory network in podocytes suggesting that WT1 gene regulatory function and podocyte cell-type specification can best be understood in the context of transcription factor-regulatory element network interplay

    Genomic characterization of Wilms' tumor suppressor 1 targets in nephron progenitor cells during kidney development

    No full text
    The Wilms' tumor suppressor 1 (WT1) gene encodes a DNA- and RNA-binding protein that plays an essential role in nephron progenitor differentiation during renal development. To identify WT1 target genes that might regulate nephron progenitor differentiation in vivo, we performed chromatin immunoprecipitation (ChIP) coupled to mouse promoter microarray (ChIP-chip) using chromatin prepared from embryonic mouse kidney tissue. We identified 1663 genes bound by WT1, 86% of which contain a previously identified, conserved, high-affinity WT1 binding site. To investigate functional interactions between WT1 and candidate target genes in nephron progenitors, we used a novel, modified WT1 morpholino loss-of-function model in embryonic mouse kidney explants to knock down WT1 expression in nephron progenitors ex vivo. Low doses of WT1 morpholino resulted in reduced WT1 target gene expression specifically in nephron progenitors, whereas high doses of WT1 morpholino arrested kidney explant development and were associated with increased nephron progenitor cell apoptosis, reminiscent of the phenotype observed in Wt1−/− embryos. Collectively, our results provide a comprehensive description of endogenous WT1 target genes in nephron progenitor cells in vivo, as well as insights into the transcriptional signaling networks controlled by WT1 that might direct nephron progenitor fate during renal development

    Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis

    No full text
    Integrin receptors for the extracellular matrix and receptor tyrosine kinase growth factor receptors represent two of the major families of receptors that transduce into cells information about the surrounding environment. Wnt proteins are a major family of signaling molecules that regulate morphogenetic events. There is presently little understanding of how the expression of Wnt genes themselves is regulated. In this study, we demonstrate that α3β1 integrin, a major laminin receptor involved in the development of the kidney, and c-Met, the receptor for hepatocyte growth factor, signal coordinately to regulate the expression of Wnt7b in the mouse. Wnt signals in turn appear to regulate epithelial cell survival in the papilla of the developing kidney, allowing for the elongation of epithelial tubules to form a mature papilla. Together, these results demonstrate how signals from integrins and growth factor receptors can be integrated to regulate the expression of an important family of signaling molecules so as to regulate morphogenetic events

    WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals

    No full text
    Development of the metanephric kidney depends on tightly regulated interplay between self-renewal and differentiation of a nephron progenitor cell (NPC) pool. Several key factors required for the survival of NPCs have been identified, including fibroblast growth factor (FGF) signaling and the transcription factor Wilms' tumor suppressor 1 (WT1). Here, we present evidence that WT1 modulates FGF signaling by activating the expression of growth arrest-specific 1 (Gas1), a novel WT1 target gene and novel modulator of FGF signaling. We show that WT1 directly binds to a conserved DNA binding motif within the Gas1 promoter and activates Gas1 mRNA transcription in NPCs. We confirm that WT1 is required for Gas1 expression in kidneys in vivo. Loss of function of GAS1 in vivo results in hypoplastic kidneys with reduced nephron mass due to premature depletion of NPCs. Although kidney development in Gas1 knockout mice progresses normally until E15.5, NPCs show decreased rates of proliferation at this stage and are depleted as of E17.5. Lastly, we show that Gas1 is selectively required for FGF-stimulated AKT signaling in vitro. In summary, our data suggest a model in which WT1 modulates receptor tyrosine kinase signaling in NPCs by directing the expression of Gas1
    corecore