6 research outputs found

    Consequences and Mitigation Strategies of Biotic and Abiotic Stress in Rice (<em>Oryza sativa</em> L.)

    Get PDF
    Rice (Oryza sativa) is the staple food for more than 3.5 billion people worldwide. Yield levels in Asia have tripled and are expected to increase by 70% over the next 30 years due to population growth. In the US, Arkansas accounts for more than 50% of rice production. Over the last 68 years, rice production has continued to grow in Mississippi, placing it in fourth place after Arkansas, Louisiana, and California. Due to increasing rice acreage, regionally and worldwide, the need to develop abiotic stress tolerant rice has increased. Unfortunately, current rice breeding programs lack genetic diversity, and many traits have been lost through the domestication of cultivated rice. Currently, stressors stemming from the continued effects of climate change continue to impact rice. This chapter highlights current research that strives to discover abiotic and biotic stress tolerant rice. This chapter calls for directed research in genetics and genomics to address the need to discover biotic and abiotic stress tolerant traits. While many genes have been uncovered to arm rice against these stresses, decreased genetic variability in current rice traits presents a small gene pool for discovery

    Allelopathy: an eco-friendly approach to control palmer amaranth using allelopathic sweetpotato

    Get PDF
    Palmer amaranth (PA) is one of the major weeds in sweetpotato reducing its quantity and quality. The widespread and repeated use of chemical herbicides has led PA to develop resistance for such chemicals. In addition, chemical herbicides are incompatible with the organic production system. It is imperative to find sustainable weed management strategies to provide weed control suitable for organic cultivation and detain the development of herbicide-resistant weeds under conventional crop production. In the present study, seventeen sweetpotato varieties were screened for their allelopathic (weed-suppressing) effect on the growth of PA. The experiment was conducted in a greenhouse using a stair-step system. Each plant in the stair-step system had its height (cm), chlorophyll concentration (cci) and shoot biomass (g) measured. The variation in the height, chlorophyll and shoot biomass reduction of PA was significant after the third week of transplanting. Three weeks after transplanting (WAT), only three varieties, i.e., Morado (75%), Bayou belle (62%), and Vardaman (61%), reduced PA’s height by &gt;60% compared to the control. While 5 WAT, four varieties, i.e., 529 (93%), Morado (93%), Heartogold (85%), and Centennial (81%), reduced PA height by &gt;80%. Hatteras, Centennial, and 529 reduced the chlorophyll content of PA by &gt;50%. In the presence of Beauregard, the commercial cultivar, there was no reduction in shoot biomass of PA. Cluster analysis also demonstrated that the four allelopathic sweetpotato varieties, i.e., Heart-O-Gold, Centennial, 529, and Morado, were clustered together, indicating that these varieties have similar potential to suppress the growth and development of PA. Combining allelopathic sweetpotato cultivars (Heart-O-Gold, Centennial, 529, and Morado) with other sustainable weed control measures, such as cover crops and hand-weeding, can improve the weed management, espicially in organic farming. However, field experiments should be conducted to confirm the allelopathic as well as yield potential of these varieties in an agronomic setting. The availability of the allelopathic sweetpotato cultivars will benefit organic producers by enhancing crop productivity and decrease reliance on chemical herbicides in conventional farming systems

    Using weed-suppressive, chromosome substitution (CS) cotton as a supplemental weed management strategy

    No full text
    Cotton is a valuable fiber crop around the world used to create fabrics, oils, and currency. The threat of herbicide resistant (HR) weed populations is precarious for cotton production. The overreaching objective of this study was to phenotype potentially allelopathic chromosome substitution (CS) lines to determine competitive accessions. The identification of competitive cotton lines would be useful in the development of alternative weed control tools. Twelve CS lines (CS-49, CS-38, CS-34, CS-39, CS-27, CS-13, CS-50, CS-26, CS-25, CS-43, CS-46, and CS-23) along with the parent line (TM1) and two conventional varieties (UA48 and Enlist) were screened in a greenhouse using the stairstep structure. Eight CS lines were then selected to test in the field and analyzed in the lab to identify allelochemical exudates using HPLC. Results of this study provide a greater insight into the nature of allelopathy and its potential usefulness in cotton crops

    Assessing the Weed-Suppressing Potential of Cotton Chromosome Substitution Lines Using the Stair-Step Assay

    No full text
    Palmer amaranth is a problematic common weed species, especially in cotton. With the wide use of chemical herbicide and herbicide-tolerant transgenic cotton lines, Palmer amaranth populations have developed tolerance to commonly used herbicides. It is imperative to develop alternative weed control methods to slow the evolution of herbicide-resistant weed populations and provide new strategies for weed management. Eleven chromosome substitution (CS) cotton lines (CS-B26lo, CS-T17, CS-B16-15, CS-B17-11, CS-B12, CS-T05sh, CS-T26lo, CS-T11sh, CS-M11sh, CS-B22sh, and CS-B22lo) were screened for weed-suppressing abilities in this study. The cotton lines were tested using the established stair-step assay. Height (cm) and chlorophyll concentration (cci) were measured for each plant in the system. The most significant variation in Palmer amaranth height reduction among the CS lines was observed 21 days after establishment. CS-B22sh (76.82%) and T26lo (68.32%) were most effective in reducing Palmer amaranth height. The cluster analysis revealed that CS-B22sh, and CS-T26lo were clustered in one group, suggesting similar genetic potential with reference to Palmer amaranth growth and development. CS-B22sh showed novel genetic potential to control the growth and development of Palmer amaranth, a problematic weed in cotton fields. Future experimentation should implement more parameters and chemical testing to explore allelopathic interactions among CS lines and Palmer amaranth

    Assessing the Weed-Suppressing Potential of Cotton Chromosome Substitution Lines Using the Stair-Step Assay

    No full text
    Palmer amaranth is a problematic common weed species, especially in cotton. With the wide use of chemical herbicide and herbicide-tolerant transgenic cotton lines, Palmer amaranth populations have developed tolerance to commonly used herbicides. It is imperative to develop alternative weed control methods to slow the evolution of herbicide-resistant weed populations and provide new strategies for weed management. Eleven chromosome substitution (CS) cotton lines (CS-B26lo, CS-T17, CS-B16-15, CS-B17-11, CS-B12, CS-T05sh, CS-T26lo, CS-T11sh, CS-M11sh, CS-B22sh, and CS-B22lo) were screened for weed-suppressing abilities in this study. The cotton lines were tested using the established stair-step assay. Height (cm) and chlorophyll concentration (cci) were measured for each plant in the system. The most significant variation in Palmer amaranth height reduction among the CS lines was observed 21 days after establishment. CS-B22sh (76.82%) and T26lo (68.32%) were most effective in reducing Palmer amaranth height. The cluster analysis revealed that CS-B22sh, and CS-T26lo were clustered in one group, suggesting similar genetic potential with reference to Palmer amaranth growth and development. CS-B22sh showed novel genetic potential to control the growth and development of Palmer amaranth, a problematic weed in cotton fields. Future experimentation should implement more parameters and chemical testing to explore allelopathic interactions among CS lines and Palmer amaranth
    corecore