4 research outputs found
Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases
Inhibition of the functions of L1 cell adhesion molecule (L1) by ethanol has been implicated in the pathogenesis of the neurodevelopmental aspects of the fetal alcohol syndrome (FAS). Ethanol at pharmacological concentrations has been shown to inhibit L1-mediated neurite outgrowth of rat post-natal day 6 cerebellar granule cells (CGN). Extracellular signal-related kinases (ERK) 1/2 activation occurs following L1 clustering. Reduction in phosphoERK1/2 by inhibition of mitogen-activated protein kinase kinase (MEK) reduces neurite outgrowth of cerebellar neurons. Here, we examine the effects of ethanol on L1 activation of ERK1/2, and whether this activation occurs via activation of fibroblast growth factor receptor 1 (FGFR1). Ethanol at 25 m
m
markedly inhibited ERK1/2 activation by both clustering L1 with cross-linked monoclonal antibodies, or by L1-Fc chimeric proteins. Clustering L1 with subsequent ERK1/2 activation did not result in tyrosine phosphorylation of the FGFR1. In addition, inhibition of FGFR1 tyrosine kinase blocked basic fibroblast growth factor (bFGF) activation of ERK1/2, but did not affect activation of ERK1/2 by clustered L1. We conclude that ethanol disrupts the signaling pathway between L1 clustering and ERK1/2 activation, and that this occurs independently of the FGFR1 pathway in cerebellar granule cells
Isotope ratios of H, C, and O in CO2 and H2O of the Martian atmosphere
Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and O-18/O-16 in water and C-13/C-12, O-18/O-16, O-17/O-16, and (CO)-C-13-O-18/(CO)-C-12-O-16 in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established similar to 4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing