21 research outputs found

    Ectopic Cdx2 Expression in Murine Esophagus Models an Intermediate Stage in the Emergence of Barrett's Esophagus

    Get PDF
    Barrett's esophagus (BE) is an intestinal metaplasia that occurs in the setting of chronic acid and bile reflux and is associated with a risk for adenocarcinoma. Expression of intestine-specific transcription factors in the esophagus likely contributes to metaplasia development. Our objective was to explore the effects of an intestine-specific transcription factor when expressed in the mouse esophageal epithelium. Transgenic mice were derived in which the transcription factor Cdx2 is expressed in squamous epithelium using the murine Keratin-14 gene promoter. Effects of the transgene upon cell proliferation and differentiation, gene expression, and barrier integrity were explored. K14-Cdx2 mice express the Cdx2 transgene in esophageal squamous tissues. Cdx2 expression was associated with reduced basal epithelial cell proliferation and altered cell morphology. Ultrastructurally two changes were noted. Cdx2 expression was associated with dilated space between the basal cells and diminished cell-cell adhesion caused by reduced Desmocollin-3 mRNA and protein expression. This compromised epithelial barrier function, as the measured trans-epithelial electrical resistance (TEER) of the K14-Cdx2 epithelium was significantly reduced compared to controls (1189 Ohm*cm2 Ā±343.5 to 508 Ohm*cm2Ā±92.48, pā€Š=ā€Š0.0532). Secondly, basal cells with features of a transitional cell type, intermediate between keratinocytes and columnar Barrett's epithelial cells, were observed. These cells had reduced keratin bundles and increased endoplasmic reticulum levels, suggesting the adoption of secretory-cell features. Moreover, at the ultrastructural level they resembled ā€œDistinctiveā€ cells associated with multilayered epithelium. Treatment of the K14-Cdx2 mice with 5ā€²-Azacytidine elicited expression of BE-associated genes including Cdx1, Krt18, and Slc26a3/Dra, suggesting the phenotype could be advanced under certain conditions. We conclude that ectopic Cdx2 expression in keratinocytes alters cell proliferation, barrier function, and differentiation. These altered cells represent a transitional cell type between normal squamous and columnar BE cells. The K14-Cdx2 mice represent a useful model to study progression from squamous epithelium to BE

    Math1/atoh1 contributes to intestinalization of esophageal keratinocytes by inducing the expression of Muc2 and Keratin-20

    No full text
    Background Esophageal intestinal metaplasia, also known as Barrett\u27s esophagus, is the replacement of the normal epithelium with one that resembles the intestine morphologically. Generally, this includes intestinal mucinsecreting goblet cells. Barrett\u27s esophagus is an important risk factor for adenocarcinoma development. In-vitro models for Barrett\u27s esophagus have not, to date, focused on the induction of goblet cells in Barrett\u27s epithelium. Aims To explore the contribution of Math1/Atoh1 to induction of Barrett\u27s esophagus and intestinal mucinsecreting goblet cells from normal human esophageal epithelium. Methods We explored the level and pattern of Math1/ Atoh1 mRNA and protein expression in human Barrett\u27s esophagus. Then, using retroviral-mediated gene expression, we induced Math1 mRNA and protein expression in a human esophageal keratinocyte cell line. We evaluated the effects of this ectopic Math1 expression on cell proliferation and gene expression patterns in cells cultured under two-dimensional and three-dimensional tissue-engineering conditions. Results Math1/Atoh1 mRNA and protein are detected in human Barrett\u27s esophagus specimens, but the mRNA levels vary substantially. In the keratinocyte expression studies, we observed that Math1/Atoh1 ectopic expression significantly reduced cell proliferation and altered cell morphology. Moreover, Math1/Atoh1 expression is associated with a more intestinalized gene expression pattern that is distinct from that reported in after studies using other intestinal transcription factors. Most significantly, we observe the induction of the Barrett\u27s esophagus markers Mucin-2 and Keratin-20 with Math1/Atoh1 expression. Conclusions We conclude that ectopic Math1/Atoh1 expression makes unique contributions to intestinalization of the esophageal epithelium in Barrett\u27s esophagus. Ā© Springer Science+Business Media, LLC 2012

    Interleukin-6-Induced STAT3 and AP-1 Amplify Hepatocyte Nuclear Factor 1-Mediated Transactivation of Hepatic Genes, an Adaptive Response to Liver Injury

    No full text
    Following hepatic injury or stress, gluconeogenic and acute-phase response genes are rapidly upregulated to restore metabolic homeostasis and limit tissue damage. Regulation of the liver-restricted insulin-like growth factor binding protein 1 (IGFBP-1) gene is dramatically altered by changes in the metabolic state and hepatectomy, and thus it provided an appropriate reporter to assess the transcriptional milieu in the liver during repair and regeneration. The cytokine interleukin-6 (IL-6) is required for liver regeneration and repair, and it transcriptionally upregulates a vast array of genes during liver growth by unknown mechanisms. Evidence for a biologic role of IL-6 in IGFBP-1 upregulation was demonstrated by increased expression of hepatic IGFBP-1 in IL-6 transgenic and following injection of IL-6 into nonfasting animals and its reduced expression in IL-6(āˆ’/āˆ’) livers posthepatectomy. In both hepatic and nonhepatic cells, IL-6 -mediated IGFBP-1 promoter activation was via an intact hepatocyte nuclear factor 1 (HNF-1) site and was dependent on the presence of endogenous liver factor HNF-1 and induced factors STAT3 and AP-1 (c-Fos/c-Jun). IL-6 acted through the STAT3 pathway, as dominant negative STAT3 completely blocked IL-6-mediated stimulation of the IGFBP-1 promoter via the HNF-1 site. HNF-1/c-Fos and HNF-1/STAT3 protein complexes were detected in mouse livers and in hepatic and nonhepatic cell lines overexpressing STAT3/c-Fos/HNF-1. Similar regulation was demonstrated using glucose-6-phosphatase and Ī±-fibrinogen promoters, indicating that HNF-1/IL-6/STAT3/AP-1-mediated transactivation of hepatic gene expression is a general phenomenon after liver injury. These results demonstrate that the two classes of transcription factors, growth induced (STAT3 and AP-1) and tissue specific (HNF-1), can interact as an adaptive response to liver injury to amplify expression of hepatic genes important for the homeostatic response during organ repair

    Cox2 and Ī²-Catenin/T-cell Factor Signaling Intestinalize Human Esophageal Keratinocytes When Cultured under Organotypic Conditions12

    Get PDF
    The incidence of esophageal adenocarcinoma (EAC) is rising in the United States. An important risk factor for EAC is the presence of Barrett esophagus (BE). BE is the replacement of normal squamous esophageal epithelium with a specialized columnar epithelium in response to chronic acid and bile reflux. However, the emergence of BE from squamous keratinocytes has not yet been demonstrated. Our research has focused on this. Wnt and cyclooxygenase 2 (Cox2) are two pathways whose activation has been associated with BE and progression to EAC, but their role has not been tested experimentally. To explore their contribution, we engineered a human esophageal keratinocyte cell line to express either a dominant-active Wnt effector CatCLef or a Cox2 complementary DNA. In a two-dimensional culture environment, Cox2 expression increases cell proliferation and migration, but neither transgene induces known BE markers. In contrast, when these cells were placed into three-dimensional organotypic culture conditions, we observed more profound effects. CatCLef-expressing cells were more proliferative, developed a thicker epithelium, and upregulated Notch signaling and several BE markers including NHE2. Cox2 expression also increased cell proliferation and induced a thicker epithelium. More importantly, we observed cysts form within the epithelium, filled with intestinal mucins including Muc5B and Muc17. This suggests that Cox2 expression in a three-dimensional culture environment induces a lineage of mucin-secreting cells and supports an important causal role for Cox2 in BE pathogenesis. We conclude that in vitro modeling of BE pathogenesis can be improved by enhancing Wnt signaling and Cox2 activity and using three-dimensional organotypic culture conditions
    corecore