28 research outputs found

    Linking Biomarker and Comparative Omics to Pathogens in Legumes

    No full text
    It is envisioned that a more precise study of the association between the traits and biomarkers will dramatically decrease the time and costs required to bring new improved disease resistance lines to market. The field of omics has an enormous potential to assess diseases more precise, including the identification and understanding of pathogenic mechanisms in legume crops, and have been exemplified by a relatively large number of studies. Recently, molecular genetic studies have accumulated a huge amount of genotypic data, through a more affordable next generation sequencing (NGS) technology, causing the omics approaches to fall behind. In this paper I provide an overview of genomics and proteomics and their use in legume crops, including the use of comparative genomics to identify homologous markers within legume crops

    Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones

    Get PDF
    Assessment of genetic diversity and population structure of germplasm collections plays a critical role in supporting conservation and crop genetic enhancement strategies. We used a cultivated lentil (Lens culinaris Medik.) collection consisting of 352 accessions originating from 54 diverse countries to estimate genetic diversity and genetic structure using 1194 polymorphic single nucleotide polymorphism (SNP) markers which span the lentil genome. Using principal coordinate analysis, population structure analysis and UPGMA cluster analysis, the accessions were categorized into three major groups that prominently reflected geographical origin (world’s agro-ecological zones). The three clusters complemented the origins, pedigrees and breeding histories of the germplasm. The three groups were a) South Asia (sub-tropical savannah), b) Mediterranean and c) northern temperate. Based on the results from this study, it is also clear that breeding programs still have considerable genetic diversity to mine within the cultivated lentil, however, surveyed South Asian and Canadian germplasm revealed narrow genetic diversity

    Genetic diversity and association mapping of iron and zinc concentrations in chickpea (<i>Cicer arietinum</i>L.)

    Full text link
    Chickpea (Cicer arietinum L.) is the world’s second most important pulse crop after common bean. Chickpea has historically been an important daily staple in the diet of millions of people, especially in the developing countries. Current chickpea breeding programs have mainly been directed toward high yield, biotic and abiotic stress resilience that has increased global production, but less attention has been directed toward improving micronutrient concentrations in seeds. In an effort to develop micronutrient-dense chickpea lines, a study to examine the variability and to identify SNP alleles associated with seed iron and zinc concentrations was conducted using 94 diverse accessions of chickpea. The results indicated that there is substantial variability present in chickpea germplasm for seed iron and zinc concentrations. In the current set of germplasm, zinc is negatively correlated with grain yield across all locations and years; whereas the negative correlation between iron and grain yield was only significant at the Elrose locality. Eight SNP loci associated with iron and (or) zinc concentrations in chickpea seeds were identified. One SNP located on chromosome 1 (chr1) is associated with both iron and zinc concentrations. On chr4, three SNPs associated with zinc concentration and two SNPs for iron concentration were identified. Two additional SNP loci, one on chr6 and the other on chr7, were also found to be associated with iron and zinc concentrations, respectively. The results show potential opportunity for molecular breeding for improvement of seed iron and zinc concentrations in chickpea.</jats:p

    Marker–Trait Association Analysis of Iron and Zinc Concentration in Lentil (Lens culinaris Medik.) Seeds

    No full text
    Lentil ( Medik.) seeds are relatively rich in iron (Fe) and zinc (Zn), making lentil a potential crop to aid in the global battle against human micronutrient deficiency. Understanding the genetic basis for uptake of seed Fe and Zn is required to increase sustainable concentrations of these minerals in seeds. The objectives of this study were to characterize genetic variation in seed Fe and Zn concentration and to identify molecular markers associated with these traits across diverse lentil accessions. A set of 138 cultivated lentil accessions from 34 countries were evaluated in four environments (2 sites × 2 yr) in Saskatchewan, Canada. The collection was genotyped using 1150 single-nucleotide polymorphism (SNP) markers that are distributed across the lentil genome. The germplasm tested exhibited a wide range of variation for seed Fe and Zn concentration. The marker–trait association analysis detected two SNP markers tightly linked to seed Fe and one linked to seed Zn concentration (−log10 ≥ 4.36). Additional markers were detected at −log10 ≥ 3.06. A number of putative candidate genes underlying detected loci encode Fe- and Zn-related functions. This study provides insight into the genetics of seed Fe and Zn concentration of lentil and opportunities for marker-assisted selection to improve micronutrient concentration as part of micronutrient biofortification programs
    corecore