1,609 research outputs found
First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism
We present a study of the superconducting transition in MgB2 using the
ab-initio pseudopotential density functional method and the fully anisotropic
Eliashberg equation. Our study shows that the anisotropic Eliashberg equation,
constructed with ab-initio calculated momentum-dependent electron-phonon
interaction and anharmonic phonon frequencies, yields an average
electron-phonon coupling constant lambda = 0.61, a transition temperature Tc =
39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable
assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are
in excellent agreement with transport, specific heat, and isotope effect
measurements respectively. The individual values of the electron-phonon
coupling lambda(k,k') on the various pieces of the Fermi surface however vary
from 0.1 to 2.5. The observed Tc is a result of both the raising effect of
anisotropy in the electron-phonon couplings and the lowering effect of
anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl
Effects of charge doping and constrained magnetization on the electronic structure of an FeSe monolayer
The electronic structural properties in the presence of constrained
magnetization and a charged background are studied for a monolayer of FeSe in
non-magnetic, checkerboard-, and striped-antiferromagnetic (AFM) spin
configurations. First principles techniques based on the pseudopotential
density functional approach and the local spin density approximation are
utilized. Our findings show that the experimentally observed shape of the Fermi
surface is best described by the checkerboard AFM spin pattern. To explore the
underlying pairing mechanism, we study the evolution of the non-magnetic to the
AFM-ordered structures under constrained magnetization. We estimate the
strength of electronic coupling to magnetic excitations involving an increase
in local moment and, separately, a partial moment transfer from one Fe atom to
another. We also show that the charge doping in the FeSe can lead to an
increase in the density of states at the Fermi level and possibly produce
higher superconducting transition temperatures
Characterization and modelling of electromagnetic interactions in aircraft
This article describes the development of modelling techniques and simulation tools for the electromagnetic (EM) analysis of aircraft. It is shown that hybrid solvers and multi-scale techniques can be used effectively to analyse the EM response of aircraft. The importance of supplementing models with appropriate measurement and characterization techniques for parameter extraction and for validation is also demonstrated
Search for Isotope Effect in Superconducting Y-Ba-Cu-O
An isotope effect has been searched for in the high-Tc, superconductor YBa2Cu307 —b through substitution of 180 for 16O. No shift in the superconducting transition temperature T, is observed by electrical resistivity or magnetic susceptibility measurements. We discuss the implications of this result for mechanisms of superconductivity in the high-T, oxides
CORE Technology and Exact Hamiltonian Real-Space Renormalization Group Transformations
The COntractor REnormalization group (CORE) method, a new approach to solving
Hamiltonian lattice systems, is presented. The method defines a systematic and
nonperturbative means of implementing Kadanoff-Wilson real-space
renormalization group transformations using cluster expansion and contraction
techniques. We illustrate the approach and demonstrate its effectiveness using
scalar field theory, the Heisenberg antiferromagnetic chain, and the
anisotropic Ising chain. Future applications to the Hubbard and t-J models and
lattice gauge theory are discussed.Comment: 65 pages, 9 Postscript figures, uses epsf.st
Recommended from our members
Evaluation of an Advanced Engineering Test Reactor Design
The scope of the study was primarily concerned with optimization of the geometrical and core-composition variables to achieve maximum flux in the loop region per unit core power without exceeding heat transfer and other engineering limitations. Centain other design questions are to be investigated. (A.C.
Measuring Strategic Uncertainty in Coordination Games
Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004This paper explores predictability of behavior in coordination games with multiple equilibria. In a laboratory experiment we measure subjects' certainty equivalents for three coordination games and one lottery. Attitudes towards strategic uncertainty in coordination games are related to risk aversion, experience seeking, gender and age. From the distribution of certainty equivalents among participating students we estimate probabilities for successful coordination in a wide range of coordination games. For many games success of coordination is predictable with a reasonable error rate. The best response of a risk neutral player is close to the global-game solution. Comparing choices in coordination games with revealed risk aversion, we estimate subjective probabilities for successful coordination. In games with a low coordination requirement, most subjects underestimate the probability of success. In games with a high coordination requirement, most subjects overestimate this probability. Data indicate that subjects have probabilistic beliefs about success or failure of coordination rather than beliefs about individual behavior of other players
Electron correlation vs. stabilization: A two-electron model atom in an intense laser pulse
We study numerically stabilization against ionization of a fully correlated
two-electron model atom in an intense laser pulse. We concentrate on two
frequency regimes: very high frequency, where the photon energy exceeds both,
the ionization potential of the outer {\em and} the inner electron, and an
intermediate frequency where, from a ``single active electron''-point of view
the outer electron is expected to stabilize but the inner one is not. Our
results reveal that correlation reduces stabilization when compared to results
from single active electron-calculations. However, despite this destabilizing
effect of electron correlation we still observe a decreasing ionization
probability within a certain intensity domain in the high-frequency case. We
compare our results from the fully correlated simulations with those from
simpler, approximate models. This is useful for future work on ``real''
more-than-one electron atoms, not yet accessible to numerical {\em ab initio}
methods.Comment: 8 pages, 8 figures in an extra ps-file, submitted to Phys. Rev. A,
updated references and shortened introductio
Search for Millicharged Particles at SLAC
Particles with electric charge q < 10^(-3)e and masses in the range 1--100
MeV/c^2 are not excluded by present experiments. An experiment uniquely suited
to the production and detection of such "millicharged" particles has been
carried out at SLAC. This experiment is sensitive to the infrequent excitation
and ionization of matter expected from the passage of such a particle. Analysis
of the data rules out a region of mass and charge, establishing, for example, a
95%-confidence upper limit on electric charge of 4.1X10^(-5)e for millicharged
particles of mass 1 MeV/c^2 and 5.8X10^(-4)e for mass 100 MeV/c^2.Comment: 4 pages, REVTeX, multicol, 3 figures. Minor typo corrected. Submitted
to Physical Review Letter
Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor
Only three processes, operant during the formation of the Solar System, are
responsible for the diversity of matter in the Solar System and are directly
responsible for planetary internal-structures, including planetocentric nuclear
fission reactors, and for dynamical processes, including and especially,
geodynamics. These processes are: (i) Low-pressure, low-temperature
condensation from solar matter in the remote reaches of the Solar System or in
the interstellar medium; (ii) High-pressure, high-temperature condensation from
solar matter associated with planetary-formation by raining out from the
interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial
volatile components from the inner portion of the Solar System by super-intense
solar wind associated with T-Tauri phase mass-ejections, presumably during the
thermonuclear ignition of the Sun. As described herein, these processes lead
logically, in a causally related manner, to a coherent vision of planetary
formation with profound implications including, but not limited to, (a) Earth
formation as a giant gaseous Jupiter-like planet with vast amounts of stored
energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal
of approximately 300 Earth-masses of primordial gases from the Earth, which
began Earth's decompression process, making available the stored energy of
protoplanetary compression for driving geodynamic processes, which I have
described by the new whole-Earth decompression dynamics and which is
responsible for emplacing heat at the mantle-crust-interface at the base of the
crust through the process I have described, called mantle decompression
thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable
of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets
entitled Neutrino Geophysics Added final corrections for publicatio
- …