1,609 research outputs found

    First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism

    Full text link
    We present a study of the superconducting transition in MgB2 using the ab-initio pseudopotential density functional method and the fully anisotropic Eliashberg equation. Our study shows that the anisotropic Eliashberg equation, constructed with ab-initio calculated momentum-dependent electron-phonon interaction and anharmonic phonon frequencies, yields an average electron-phonon coupling constant lambda = 0.61, a transition temperature Tc = 39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are in excellent agreement with transport, specific heat, and isotope effect measurements respectively. The individual values of the electron-phonon coupling lambda(k,k') on the various pieces of the Fermi surface however vary from 0.1 to 2.5. The observed Tc is a result of both the raising effect of anisotropy in the electron-phonon couplings and the lowering effect of anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl

    Effects of charge doping and constrained magnetization on the electronic structure of an FeSe monolayer

    Full text link
    The electronic structural properties in the presence of constrained magnetization and a charged background are studied for a monolayer of FeSe in non-magnetic, checkerboard-, and striped-antiferromagnetic (AFM) spin configurations. First principles techniques based on the pseudopotential density functional approach and the local spin density approximation are utilized. Our findings show that the experimentally observed shape of the Fermi surface is best described by the checkerboard AFM spin pattern. To explore the underlying pairing mechanism, we study the evolution of the non-magnetic to the AFM-ordered structures under constrained magnetization. We estimate the strength of electronic coupling to magnetic excitations involving an increase in local moment and, separately, a partial moment transfer from one Fe atom to another. We also show that the charge doping in the FeSe can lead to an increase in the density of states at the Fermi level and possibly produce higher superconducting transition temperatures

    Characterization and modelling of electromagnetic interactions in aircraft

    Get PDF
    This article describes the development of modelling techniques and simulation tools for the electromagnetic (EM) analysis of aircraft. It is shown that hybrid solvers and multi-scale techniques can be used effectively to analyse the EM response of aircraft. The importance of supplementing models with appropriate measurement and characterization techniques for parameter extraction and for validation is also demonstrated

    Search for Isotope Effect in Superconducting Y-Ba-Cu-O

    Get PDF
    An isotope effect has been searched for in the high-Tc, superconductor YBa2Cu307 —b through substitution of 180 for 16O. No shift in the superconducting transition temperature T, is observed by electrical resistivity or magnetic susceptibility measurements. We discuss the implications of this result for mechanisms of superconductivity in the high-T, oxides

    CORE Technology and Exact Hamiltonian Real-Space Renormalization Group Transformations

    Full text link
    The COntractor REnormalization group (CORE) method, a new approach to solving Hamiltonian lattice systems, is presented. The method defines a systematic and nonperturbative means of implementing Kadanoff-Wilson real-space renormalization group transformations using cluster expansion and contraction techniques. We illustrate the approach and demonstrate its effectiveness using scalar field theory, the Heisenberg antiferromagnetic chain, and the anisotropic Ising chain. Future applications to the Hubbard and t-J models and lattice gauge theory are discussed.Comment: 65 pages, 9 Postscript figures, uses epsf.st

    Measuring Strategic Uncertainty in Coordination Games

    Get PDF
    Lecture on the first SFB/TR 15 meeting, Gummersbach, July, 18 - 20, 2004This paper explores predictability of behavior in coordination games with multiple equilibria. In a laboratory experiment we measure subjects' certainty equivalents for three coordination games and one lottery. Attitudes towards strategic uncertainty in coordination games are related to risk aversion, experience seeking, gender and age. From the distribution of certainty equivalents among participating students we estimate probabilities for successful coordination in a wide range of coordination games. For many games success of coordination is predictable with a reasonable error rate. The best response of a risk neutral player is close to the global-game solution. Comparing choices in coordination games with revealed risk aversion, we estimate subjective probabilities for successful coordination. In games with a low coordination requirement, most subjects underestimate the probability of success. In games with a high coordination requirement, most subjects overestimate this probability. Data indicate that subjects have probabilistic beliefs about success or failure of coordination rather than beliefs about individual behavior of other players

    Electron correlation vs. stabilization: A two-electron model atom in an intense laser pulse

    Full text link
    We study numerically stabilization against ionization of a fully correlated two-electron model atom in an intense laser pulse. We concentrate on two frequency regimes: very high frequency, where the photon energy exceeds both, the ionization potential of the outer {\em and} the inner electron, and an intermediate frequency where, from a ``single active electron''-point of view the outer electron is expected to stabilize but the inner one is not. Our results reveal that correlation reduces stabilization when compared to results from single active electron-calculations. However, despite this destabilizing effect of electron correlation we still observe a decreasing ionization probability within a certain intensity domain in the high-frequency case. We compare our results from the fully correlated simulations with those from simpler, approximate models. This is useful for future work on ``real'' more-than-one electron atoms, not yet accessible to numerical {\em ab initio} methods.Comment: 8 pages, 8 figures in an extra ps-file, submitted to Phys. Rev. A, updated references and shortened introductio

    Search for Millicharged Particles at SLAC

    Get PDF
    Particles with electric charge q < 10^(-3)e and masses in the range 1--100 MeV/c^2 are not excluded by present experiments. An experiment uniquely suited to the production and detection of such "millicharged" particles has been carried out at SLAC. This experiment is sensitive to the infrequent excitation and ionization of matter expected from the passage of such a particle. Analysis of the data rules out a region of mass and charge, establishing, for example, a 95%-confidence upper limit on electric charge of 4.1X10^(-5)e for millicharged particles of mass 1 MeV/c^2 and 5.8X10^(-4)e for mass 100 MeV/c^2.Comment: 4 pages, REVTeX, multicol, 3 figures. Minor typo corrected. Submitted to Physical Review Letter

    Solar System Processes Underlying Planetary Formation, Geodynamics, and the Georeactor

    Full text link
    Only three processes, operant during the formation of the Solar System, are responsible for the diversity of matter in the Solar System and are directly responsible for planetary internal-structures, including planetocentric nuclear fission reactors, and for dynamical processes, including and especially, geodynamics. These processes are: (i) Low-pressure, low-temperature condensation from solar matter in the remote reaches of the Solar System or in the interstellar medium; (ii) High-pressure, high-temperature condensation from solar matter associated with planetary-formation by raining out from the interiors of giant-gaseous protoplanets, and; (iii) Stripping of the primordial volatile components from the inner portion of the Solar System by super-intense solar wind associated with T-Tauri phase mass-ejections, presumably during the thermonuclear ignition of the Sun. As described herein, these processes lead logically, in a causally related manner, to a coherent vision of planetary formation with profound implications including, but not limited to, (a) Earth formation as a giant gaseous Jupiter-like planet with vast amounts of stored energy of protoplanetary compression in its rock-plus-alloy kernel; (b) Removal of approximately 300 Earth-masses of primordial gases from the Earth, which began Earth's decompression process, making available the stored energy of protoplanetary compression for driving geodynamic processes, which I have described by the new whole-Earth decompression dynamics and which is responsible for emplacing heat at the mantle-crust-interface at the base of the crust through the process I have described, called mantle decompression thermal-tsunami; and, (c)Uranium accumulations at the planetary centers capable of self-sustained nuclear fission chain reactions.Comment: Invited paper for the Special Issue of Earth, Moon and Planets entitled Neutrino Geophysics Added final corrections for publicatio
    • …
    corecore