76 research outputs found
Activation of microRNA-596 induced by DNA demethylation and interferon in malignant melanoma cells
Dysregulation of microRNA has been implicated in melanoma, although the mechanism is not fully understood. We aimed to examine the epigenetically silenced miRNAs and its involvement in the antitumor effect of DNA demethylation and interferon in melanoma. Growth suppressive effects of 5-aza-2’deoxycytidine plus interferon-β were assessed in 20 melanoma cell lines, and the highest effect was observed in TXM18 cells. A screen for miRNAs induced by 5-aza-2’deoxycytidine plus IFN-β in TXM18 cells identifi ed a set of miRNAs including miR-7, miR-203, miR-215 and miR-596. The CpG island of the miR-596 gene was highly methylated in all melanoma cell lines tested (n = 20) whereas levels of methylation were limited in normal melanocytes. Methylation levels of miR-596 were signifi cantly higher in clinical specimens of melanoma than in benign melanocytic nevi (40.6% vs. 30.1%, P= 0.018). Furthermore, transfection of a precursor of miR-596 into melanoma cells induced growth suppression, indicating that the effect of 5-aza-2’deoxycytidine plus interferon-β is in part due to induction of miR-596. Our data suggest that miR-596 is a novel tumor suppressor frequently silenced by DNA methylation in melanoma; that modulation of miRNAs may be involved in the antitumor effect of DNA demethylation plus interferon in melanoma.departmental bulletin pape
Assessment of epigenetic alterations in early colorectal lesions containing BRAF mutations
金沢大学医薬保健学総合研究科先進的地域医療研究講座 = Department of Advanced Research in Community MedicineTo clarify the molecular and clinicopathological characteristics of colorectal serrated lesions, we assessed the DNA methylation of cancer-associated genes in a cohort of BRAF-mutant precancerous lesions from 94 individuals. We then compared those results with the lesions’ clinicopathological features, especially colorectal subsites. The lesions included hyperplastic polyps (n = 16), traditional serrated adenomas (TSAs) (n = 15), TSAs with sessile serrated adenomas (SSAs) (n = 6), SSAs (n = 49) and SSAs with dysplasia (n = 16). The prevalence of lesions exhibiting the CpG island methylator phenotype (CIMP) was lower in the sigmoid colon and rectum than in other bowel subsites, including the cecum, ascending, transverse and descending colon. In addition, several cancer-associated genes showed higher methylation levels within lesions in the proximal to sigmoid colon than in the sigmoid colon and rectum. These results indicate that the methylation status of lesions with BRAF mutation is strongly associated with their location, histological findings and neoplastic pathways. By contrast, no difference in aberrant DNA methylation was observed in normal-appearing background colonic mucosa along the bowel subsites, which may indicate the absence of an epigenetic field defect
Cytoplasmic RASSF2A is a proapoptotic mediator whose expression is epigenetically silenced in gastric cancer
Gastric cancer cells often show altered Ras signaling, though the underlying molecular mechanism is not fully understood. We examined the expression profile of eight ras-association domain family (RASSF) genes plus MST1/2 and found that RASSF2A is the most frequently downregulated in gastric cancer. RASSF2A was completely silenced in 6 of 10 gastric cancer cell lines as a result of promoter methylation, and expression was restored by treating the cells with 5-aza-2′-deoxycytidine. Introduction of RASSF2A into non-expressing cell lines suppressed colony formation and induced apoptosis. These effects were associated with the cytoplasmic localization of RASSF2A and morphological changes to the cells. Complementary DNA microarray analysis revealed that RASSF2A suppresses the expression of inflammatory cytokines, which may in turn suppress angiogenesis and invasion. In primary gastric cancers, aberrant methylation of RASSF2A was detected in 23 of 78 (29.5%) cases, and methylation correlated significantly with an absence of the lymphatic invasion, absence of venous invasion, absence of lymph node metastasis, less advanced stages, Epstein–Barr virus, absence of p53 mutations and the presence of the CpG island methylator phenotype-high. These results suggest that epigenetic inactivation of RASSF2A is required for tumorigenesis in a subset of gastric cancers
Epigenetic Regulation of Cell Type–Specific Expression Patterns in the Human Mammary Epithelium
Differentiation is an epigenetic program that involves the gradual loss of pluripotency and acquisition of cell type–specific features. Understanding these processes requires genome-wide analysis of epigenetic and gene expression profiles, which have been challenging in primary tissue samples due to limited numbers of cells available. Here we describe the application of high-throughput sequencing technology for profiling histone and DNA methylation, as well as gene expression patterns of normal human mammary progenitor-enriched and luminal lineage-committed cells. We observed significant differences in histone H3 lysine 27 tri-methylation (H3K27me3) enrichment and DNA methylation of genes expressed in a cell type–specific manner, suggesting their regulation by epigenetic mechanisms and a dynamic interplay between the two processes that together define developmental potential. The technologies we developed and the epigenetically regulated genes we identified will accelerate the characterization of primary cell epigenomes and the dissection of human mammary epithelial lineage-commitment and luminal differentiation
Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity.
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution
A novel method, digital genome scanning detects KRAS gene amplification in gastric cancers: involvement of overexpressed wild-type KRAS in downstream signaling and cancer cell growth
<p>Abstract</p> <p>Background</p> <p>Gastric cancer is the third most common malignancy affecting the general population worldwide. Aberrant activation of KRAS is a key factor in the development of many types of tumor, however, oncogenic mutations of <it>KRAS </it>are infrequent in gastric cancer. We have developed a novel quantitative method of analysis of DNA copy number, termed digital genome scanning (DGS), which is based on the enumeration of short restriction fragments, and does not involve PCR or hybridization. In the current study, we used DGS to survey copy-number alterations in gastric cancer cells.</p> <p>Methods</p> <p>DGS of gastric cancer cell lines was performed using the sequences of 5000 to 15000 restriction fragments. We screened 20 gastric cancer cell lines and 86 primary gastric tumors for <it>KRAS </it>amplification by quantitative PCR, and investigated <it>KRAS </it>amplification at the DNA, mRNA and protein levels by mutational analysis, real-time PCR, immunoblot analysis, GTP-RAS pull-down assay and immunohistochemical analysis. The effect of <it>KRAS </it>knock-down on the activation of p44/42 MAP kinase and AKT and on cell growth were examined by immunoblot and colorimetric assay, respectively.</p> <p>Results</p> <p>DGS analysis of the HSC45 gastric cancer cell line revealed the amplification of a 500-kb region on chromosome 12p12.1, which contains the <it>KRAS </it>gene locus. Amplification of the <it>KRAS </it>locus was detected in 15% (3/20) of gastric cancer cell lines (8–18-fold amplification) and 4.7% (4/86) of primary gastric tumors (8–50-fold amplification). <it>KRAS </it>mutations were identified in two of the three cell lines in which <it>KRAS </it>was amplified, but were not detected in any of the primary tumors. Overexpression of KRAS protein correlated directly with increased <it>KRAS </it>copy number. The level of GTP-bound KRAS was elevated following serum stimulation in cells with amplified wild-type <it>KRAS</it>, but not in cells with amplified mutant <it>KRAS</it>. Knock-down of <it>KRAS </it>in gastric cancer cells that carried amplified wild-type <it>KRAS </it>resulted in the inhibition of cell growth and suppression of p44/42 MAP kinase and AKT activity.</p> <p>Conclusion</p> <p>Our study highlights the utility of DGS for identification of copy-number alterations. Using DGS, we identified <it>KRAS </it>as a gene that is amplified in human gastric cancer. We demonstrated that gene amplification likely forms the molecular basis of overactivation of KRAS in gastric cancer. Additional studies using a larger cohort of gastric cancer specimens are required to determine the diagnostic and therapeutic implications of <it>KRAS </it>amplification and overexpression.</p
Long noncoding RNA involvement in cancer
Recent advances in genome and transcriptome analysis haveenabled identification of numerous members of a new class ofnoncoding RNA, long noncoding RNA (lncRNA). lncRNAs arebroadly defined as RNA molecules greater than 200 nt inlength and lacking an open reading frame. Recent studiesprovide evidence that lncRNAs play central roles in a widerange of cellular processes through interaction with keycomponent proteins in the gene regulatory system, and thatalteration of their cell- or tissue-specific expression and/or theirprimary or secondary structures is thought to promote cellproliferation, invasion and metastasis. The biological andmolecular characteristics of the large majority of lncRNAsremains unknown, and it is anticipated that improvedunderstanding of the roles played by lncRNAs in cancer willlead to the development of novel biomarkers and effectivetherapeutic strategies
Epigenetic alteration and microRNA dysregulation in cancer
MicroRNAs (miRNAs) play pivotal roles in numerous biological processes, and their dysregulation is a common feature of human cancer. Thanks to recent advances in the analysis of the cancer epigenome, we now know that epigenetic alterations, including aberrant DNA methylation and histone modifications, are major causes of miRNA dysregulation in cancer. Moreover, the list of miRNA genes silenced in association with CpG island hypermethylation is rapidly growing, and various oncogenic miRNAs are now known to be upregulated via DNA hypomethylation. Histone modifications also play important roles in the dysregulation of miRNAs, and histone deacetylation and gain of repressive histone marks are strongly associated with miRNA gene silencing. Conversely, miRNA dysregulation is causally related to epigenetic alterations in cancer. Thus aberrant methylation of miRNA genes is a potentially useful biomarker for detecting cancer and predicting its outcome. Given that many of the silenced miRNAs appear to act as tumor suppressors through the targeting of oncogenes, re-expression of the miRNAs could be an effective approach to cancer therapy, and unraveling the relationship between epigenetic alteration and miRNA dysregulation may lead to the discovery of new therapeutic targets
- …