2 research outputs found

    Recycling mine tailings as precursors for cementitious binders – Methods, challenges and future outlook

    Get PDF
    © 2021 Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.conbuildmat.2021.125333Increase in demand for mineral commodities such as coal, copper, iron, aluminium, gold, tungsten, zinc etc., has led to higher quantity of mineral waste produced such as solids, crushed rocks, overburden soil and tailings. The fine-grained mineral waste left after removal of valuable material from ore is called mine tailing and is one of the major wastes of the mining processes. Mineral wastes from mines, quarries and excavations are typically rich in SiO2, Al2O3, CaO and Fe2O3. This chemical composition makes them very attractive candidates to be used in the production of construction materials, as these oxides are also the main constituents of cement as well as of key alkali-activated binders. This contribution aims to provide a comprehensive overview of the nature of mine tailings, the current state-of-the-art in their utilisation in cementitious binders and the future potential. A rational summary of limitations associated with use of mine tailing in cementitious binder due to its low reactivity and potential solutions to overcome it is also provided. The study concludes with how the use of mine tailings in cementitious binder could benefit in achieving the global sustainability goals.Peer reviewe

    Proceedings of Abstracts, School of Physics, Engineering and Computer Science Research Conference 2022

    Get PDF
    © 2022 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Plenary by Prof. Timothy Foat, ‘Indoor dispersion at Dstl and its recent application to COVID-19 transmission’ is © Crown copyright (2022), Dstl. This material is licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: [email protected] present proceedings record the abstracts submitted and accepted for presentation at SPECS 2022, the second edition of the School of Physics, Engineering and Computer Science Research Conference that took place online, the 12th April 2022
    corecore