561 research outputs found
Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS
Abstract. The seasonal and year-to-year variability of the phytoplankton size class (PSC) spatial distribution has been examined in the Mediterranean Sea by using the entire time series of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) space observations (1998–2010). Daily maps of PSCs have been determined using an empirical model based on a synoptic relationship between surface chlorophyll a and diagnostic pigments referred to different taxonomic groups. The analysis of micro-, nano- and pico-phytoplankton satellite time series (1998–2010) describes, quantitatively, the algal assemblage structure over the basin and reveals that the main contribution to chlorophyll a in most of the Mediterranean Sea comes from the pico-phytoplankton component, especially in nutrient-poor environments. Regions with different and peculiar features are the Northwestern Mediterranean Sea, the Alborán Sea and several coastal areas, such as the North Adriatic Sea. In these areas, local interactions between physical and biological components modulate the composition of the three phytoplankton size classes. It results that, during the spring bloom season, micro-phytoplankton dominates in areas of intense vertical winter mixing and deep/intermediate water formation, while in coastal areas micro-phytoplankton dominates in all seasons because of the nutrient supply from the terrestrial inputs. In the Alborán Sea, where the Atlantic inflow modulates the nutrient availability, any predominance of one class over the other two has been observed. The nano-phytoplankton component instead remains widespread over the entire basin along the year, and its contribution to chlorophyll a is of the order of 30–40 %. The largest inter-annual signal occurs in the Northwestern Mediterranean Sea, driven by the year-to-year variation in intensity and extension of the spring bloom, followed by the Alborán Sea, in which the inter-annual variability is strongly modulated by the Atlantic inflow. In absence of sufficient in situ data of community composition, the satellite-based analysis demonstrated that pico-, nano- and micro-phytoplankton classes often coexist. The predominance of one group over the other ones is strongly dependent on the physical and biological processes occurring at the mesoscale. These processes directly influence the nutrient and light availability, which are the principal forcing for the algae growth
Stochastic Coherence Over Attention Trajectory For Continuous Learning In Video Streams
Devising intelligent agents able to live in an environment and learn by observing the surroundings is a longstanding goal of Artificial Intelligence. From a bare Machine Learning perspective, challenges arise when the agent is prevented from leveraging large fully-annotated dataset, but rather the interactions with supervisory signals are sparsely distributed over space and time. This paper proposes a novel neural-network-based approach to progressively and autonomously develop pixel-wise representations in a video stream. The proposed method is based on a human-like attention mechanism that allows the agent to learn by observing what is moving in the attended locations. Spatio-temporal stochastic coherence along the attention trajectory, paired with a contrastive term, leads to an unsupervised learning criterion that naturally copes with the considered setting. Differently from most existing works, the learned representations are used in open-set class-incremental classification of each frame pixel, relying on few supervisions. Our experiments leverage 3D virtual environments and they show that the proposed agents can learn to distinguish objects just by observing the video stream. Inheriting features from state-of-the art models is not as powerful as one might expect
Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and beta-arrestins.: FLNA AND Ăźarr COOPERATE TO REGULATE ERK AND CELL SHAPE
14 pagesbeta-Arrestins (betaarr) are multifunctional adaptor proteins that can act as scaffolds for G protein-coupled receptor activation of mitogen-activated protein kinases (MAPK). Here, we identify the actin-binding and scaffolding protein filamin A (FLNA) as a betaarr-binding partner using Son of sevenless recruitment system screening, a classical yeast two-hybrid system, coimmunoprecipitation analyses, and direct binding in vitro. In FLNA, the betaarr-binding site involves tandem repeat 22 in the carboxyl terminus. betaarr binds FLNA through both its N- and C-terminal domains, indicating the presence of multiple binding sites. We demonstrate that betaarr and FLNA act cooperatively to activate the MAPK extracellular signal-regulated kinase (ERK) downstream of activated muscarinic M1 (M1MR) and angiotensin II type 1a (AT1AR) receptors and provide experimental evidence indicating that this phenomenon is due to the facilitation of betaarr-ERK2 complex formation by FLNA. In Hep2 cells, stimulation of M1MR or AT1AR results in the colocalization of receptor, betaarr, FLNA, and active ERK in membrane ruffles. Reduction of endogenous levels of betaarr or FLNA and a catalytically inactive dominant negative MEK1, which prevents ERK activation, inhibit membrane ruffle formation, indicating the functional requirement for betaarr, FLNA, and active ERK in this process. Our results indicate that betaarr and FLNA cooperate to regulate ERK activation and actin cytoskeleton reorganization
Immunomediated and ischemia-independent inflammation of coronary microvessels in unstable angina.
This study investigated whether the myocardium is involved in the acute inflammatory reaction associated with bursts of unstable angina (UA). We looked for the presence of activated DR+ inflammatory cells and the expression patterns, localization, and immunostaining identification of genes for cytokines (IL-1beta, TNF-alpha, IL-6, and IFN-gamma), MCP-1, and iNOS in the left ventricle biopsies from 2-vessel disease anginal patients, 24 with UA and 12 with stable angina (SA), who underwent coronary bypass surgery. Biopsy specimens from 6 patients with mitral stenosis who underwent valve replacement were examined as control hearts (CHs). Plasma levels of IL-2 soluble receptor (sIL-2R) were measured as a marker of systemic immune reaction. In CHs, DR+ cells were undetectable, and cytokine and iNOS mRNA expression were negligible. UA patients had higher sIL-2R levels than SA patients (P<0.01), and their biopsy specimens showed both numerous DR+ cells identified as lymphocytes, macrophages, endothelial cells, and elevated expression levels of cytokine and iNOS genes (from 2.4- to 6.1-fold vs SA; P<0.01). Cytokine and iNOS genes and proteins were localized in endothelial cells without involvement of myocytes. IL-1beta and MCP-1 mRNAs were nearly undetectable. No significant differences were found in the number of DR+ cells, levels of cytokine, and iNOS genes between potentially ischemic and nonischemic left ventricle areas. In SA specimens, DR+ cells were very rare and only mRNAs for TNF-alpha and iNOS genes were overexpressed versus CHs. These results indicated that an acute immunomediated inflammatory reaction, essentially involving coronary microvessels, is demonstrable in UA patients
Interplay between Nox2 activity and platelet activation in patients with sepsis and septic shock. a prospective study
Background. Although preclinical studies highlighted the potential role of NADPH oxidase (NOX) in sepsis, only few studies evaluated the oxidative stress in patients with sepsis and septic shock. The objective of the study is to appraise the oxidative stress status and platelet function in patients with sepsis and septic shock compared to healthy controls. Methods and Results. Patients with sepsis or septic shock admitted to the hospital Policlinico Umberto I (Sapienza University, Rome) underwent a blood sample collection within 1 hour from admission. Platelet aggregation, serum thromboxane B2 (TxB2), soluble NOX2-derived peptides (sNox2-dp), and hydrogen peroxide breakdown activity (HBA) were measured and compared to those of healthy volunteers. Overall, 33 patients were enrolled; of these, 20 (60.6%) had sepsis and 13 (39.4%) septic shock. Compared to healthy controls (n=10, age 67.8±3.2, male 50%), patients with sepsis and septic shock had higher platelet aggregation (49% (IQR 45-55), 60% (55.75-67.25), and 73% (IQR 69-80), respectively, p<0.001), higher serum TxB2 (77.5 (56.5-86.25), 122.5 (114-131.5), and 210 (195-230) pmol/L, respectively, p<0.001), higher sNox2-dp (10 (7.75-12), 19.5 (17.25-21), and 33 (29.5-39) pg/mL, respectively, p<0.001), and lower HBA (75% (67.25-81.5), 50% (45-54.75), and 27% (21.5-32.5), respectively, p<0.001). Although not statistically significant, a trend in higher levels of serum TxB2 and sNox2-dp in patients who died was observed. Conclusions. Patients with septic shock exhibit higher Nox2 activity and platelet activation than patients with sepsis. These insights joined to better knowledge of these mechanisms could guide the identification of future prognostic biomarkers and new therapeutic strategies in the scenario of septic shock
Realization of the farad from the dc quantum Hall effect with digitally-assisted impedance bridges
A new traceability chain for the derivation of the farad from dc quantum Hall
effect has been implemented at INRIM. Main components of the chain are two new
coaxial transformer bridges: a resistance ratio bridge, and a quadrature
bridge, both operating at 1541 Hz. The bridges are energized and controlled
with a polyphase direct-digital-synthesizer, which permits to achieve both main
and auxiliary equilibria in an automated way; the bridges and do not include
any variable inductive divider or variable impedance box. The relative
uncertainty in the realization of the farad, at the level of 1000 pF, is
estimated to be 64E-9. A first verification of the realization is given by a
comparison with the maintained national capacitance standard, where an
agreement between measurements within their relative combined uncertainty of
420E-9 is obtained.Comment: 15 pages, 11 figures, 3 table
Recommended from our members
Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios
The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air–sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961–2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001–2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air–sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070–2099 period compared to 1961–1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in General Circulation Models, has the largest impact on the evolution of the Mediterranean water masses, followed by the choice of the socio-economic scenario. The choice of river runoff and atmospheric forcing both have a smaller impact. The state of the MTHC during the historical period is found to have a large influence on the transfer of surface anomalies toward depth. Besides, subsurface currents are substantially modified in the Ionian Sea and the Balearic region. Finally, the response of thermosteric sea level ranges from +34 to +49 cm (2070–2099 vs. 1961–1990), mainly depending on the Atlantic forcing
- …