245 research outputs found

    Triaxial nuclear models and the outer crust of nonaccreting cold neutron stars

    Get PDF
    The properties and composition of the outer crust of nonaccreting cold neutron stars are studied by applying the model of Baym, Pethick, and Sutherland (BPS) and taking into account for the first time triaxial deformations of nuclei. Two theoretical nuclear models, Hartree-Fock plus pairing in the BCS approximation (HF-BCS) with Skyrme SLy6 parametrization and Hartree-Fock-Bogolyubov (HFB) with Gogny D1S force, are used to calculate the nuclear masses. The two theoretical calculations are compared concerning their neutron drip line, binding energies, magic neutron numbers, and the sequence of nuclei in the outer crust of nonaccreting cold neutron stars, with special emphasis on the effect of triaxial deformations. The BPS model is extended by the higher-order corrections for the atomic binding, screening, exchange and zero-point energies. The influence of the higher-order corrections on the sequence of the outer crust is investigated.Comment: 7 page

    Dissipative quantum dynamics in low-energy collisions of complex nuclei

    Get PDF
    Model calculations that include the effects of irreversible, environmental couplings on top of a coupled-channels dynamical description of the collision of two complex nuclei are presented. The Liouville-von Neumann equation for the time-evolution of the density matrix of a dissipative system is solved numerically providing a consistent transition from coherent to decoherent (and dissipative) dynamics during the collision. Quantum decoherence and dissipation are clearly manifested in the model calculations. Energy dissipation, due to the irreversible decay of giant-dipole vibrational states of the colliding nuclei, is shown to result in a hindrance of quantum tunneling and fusion.Comment: Accepted in Physical Review

    Spin-Excitation Mechanisms in Skyrme-Force Time-Dependent Hartree-Fock

    Full text link
    We investigate the role of odd-odd (with respect to time inversion) couplings in the Skyrme force on collisions of light nuclei, employing a fully three-dimensional numerical treatment without any symmetry restrictions and with modern Skyrme functionals. We demonstrate the necessity of these couplings to suppress spurious spin excitations owing to the spin-orbit force in free translational motion of a nucleus but show that in a collision situation there is a strong spin excitation even in spin-saturated systems which persists in the departing fragments. The energy loss is considerably increased by the odd-odd terms

    Single-particle dissipation in TDHF studied from a phase-space perspective

    Get PDF
    We study dissipation and relaxation processes within the time-dependent Hartree-Fock approach using the Wigner distribution function. On the technical side we present a geometrically unrestricted framework which allows us to calculate the full six-dimensional Wigner distribution function. With the removal of geometrical constraints, we are now able to extend our previous phase-space analysis of heavy-ion collisions in the reaction plane to unrestricted mean-field simulations of nuclear matter on a three-dimensional Cartesian lattice. From the physical point of view we provide a quantitative analysis on the stopping power in TDHF. This is linked to the effect of transparency. For the medium-heavy 40^{40}Ca+40^{40}Ca system we examine the impact of different parametrizations of the Skyrme force, energy-dependence, and the significance of extra time-odd terms in the Skyrme functional.Comment: 7 pages, 4 figures, 2 videos. arXiv admin note: substantial text overlap with arXiv:1201.526

    Description of nuclear systems within the relativistic Hartree-Fock method with zero range self-interactions of the scalar field

    Full text link
    An exact method is suggested to treat the nonlinear self-interactions (NLSI) in the relativistic Hartree-Fock (RHF) approach for nuclear systems. We consider here the NLSI constructed from the relativistic scalar nucleon densities and including products of six and eight fermion fields. This type of NLSI corresponds to the zero range limit of the standard cubic and quartic self-interactions of the scalar field. The method to treat the NLSI uses the Fierz transformation, which enables one to express the exchange (Fock) components in terms of the direct (Hartree) ones. The method is applied to nuclear matter and finite nuclei. It is shown that, in the RHF formalism, the NLSI, which are explicitly isovector-independent, generate scalar, vector and tensor nucleon self-energies strongly density-dependent. This strong isovector structure of the self-energies is due to the exchange terms of the RHF method. Calculations are carried out with a parametrization containing five free parameters. The model allows a description of both types of systems compatible with experimental data.Comment: 23 pages, 14 figures (v2: major quantitative changes
    corecore