245 research outputs found
Triaxial nuclear models and the outer crust of nonaccreting cold neutron stars
The properties and composition of the outer crust of nonaccreting cold
neutron stars are studied by applying the model of Baym, Pethick, and
Sutherland (BPS) and taking into account for the first time triaxial
deformations of nuclei. Two theoretical nuclear models, Hartree-Fock plus
pairing in the BCS approximation (HF-BCS) with Skyrme SLy6 parametrization and
Hartree-Fock-Bogolyubov (HFB) with Gogny D1S force, are used to calculate the
nuclear masses. The two theoretical calculations are compared concerning their
neutron drip line, binding energies, magic neutron numbers, and the sequence of
nuclei in the outer crust of nonaccreting cold neutron stars, with special
emphasis on the effect of triaxial deformations. The BPS model is extended by
the higher-order corrections for the atomic binding, screening, exchange and
zero-point energies. The influence of the higher-order corrections on the
sequence of the outer crust is investigated.Comment: 7 page
Dissipative quantum dynamics in low-energy collisions of complex nuclei
Model calculations that include the effects of irreversible, environmental
couplings on top of a coupled-channels dynamical description of the collision
of two complex nuclei are presented. The Liouville-von Neumann equation for the
time-evolution of the density matrix of a dissipative system is solved
numerically providing a consistent transition from coherent to decoherent (and
dissipative) dynamics during the collision. Quantum decoherence and dissipation
are clearly manifested in the model calculations. Energy dissipation, due to
the irreversible decay of giant-dipole vibrational states of the colliding
nuclei, is shown to result in a hindrance of quantum tunneling and fusion.Comment: Accepted in Physical Review
Spin-Excitation Mechanisms in Skyrme-Force Time-Dependent Hartree-Fock
We investigate the role of odd-odd (with respect to time inversion) couplings
in the Skyrme force on collisions of light nuclei, employing a fully
three-dimensional numerical treatment without any symmetry restrictions and
with modern Skyrme functionals. We demonstrate the necessity of these couplings
to suppress spurious spin excitations owing to the spin-orbit force in free
translational motion of a nucleus but show that in a collision situation there
is a strong spin excitation even in spin-saturated systems which persists in
the departing fragments. The energy loss is considerably increased by the
odd-odd terms
Single-particle dissipation in TDHF studied from a phase-space perspective
We study dissipation and relaxation processes within the time-dependent
Hartree-Fock approach using the Wigner distribution function. On the technical
side we present a geometrically unrestricted framework which allows us to
calculate the full six-dimensional Wigner distribution function. With the
removal of geometrical constraints, we are now able to extend our previous
phase-space analysis of heavy-ion collisions in the reaction plane to
unrestricted mean-field simulations of nuclear matter on a three-dimensional
Cartesian lattice. From the physical point of view we provide a quantitative
analysis on the stopping power in TDHF. This is linked to the effect of
transparency. For the medium-heavy Ca+Ca system we examine the
impact of different parametrizations of the Skyrme force, energy-dependence,
and the significance of extra time-odd terms in the Skyrme functional.Comment: 7 pages, 4 figures, 2 videos. arXiv admin note: substantial text
overlap with arXiv:1201.526
Description of nuclear systems within the relativistic Hartree-Fock method with zero range self-interactions of the scalar field
An exact method is suggested to treat the nonlinear self-interactions (NLSI)
in the relativistic Hartree-Fock (RHF) approach for nuclear systems. We
consider here the NLSI constructed from the relativistic scalar nucleon
densities and including products of six and eight fermion fields. This type of
NLSI corresponds to the zero range limit of the standard cubic and quartic
self-interactions of the scalar field. The method to treat the NLSI uses the
Fierz transformation, which enables one to express the exchange (Fock)
components in terms of the direct (Hartree) ones. The method is applied to
nuclear matter and finite nuclei. It is shown that, in the RHF formalism, the
NLSI, which are explicitly isovector-independent, generate scalar, vector and
tensor nucleon self-energies strongly density-dependent. This strong isovector
structure of the self-energies is due to the exchange terms of the RHF method.
Calculations are carried out with a parametrization containing five free
parameters. The model allows a description of both types of systems compatible
with experimental data.Comment: 23 pages, 14 figures (v2: major quantitative changes
Spectrometric Determination of Urokinase in Urine after Gel Filtration, Using the Chromogenic Substrate S-2444
Peer Reviewe
- …
