805 research outputs found

    Nucleus polarizability contribution to the hydrogen-deuterium isotope shift

    Full text link
    The correction to the hydrogen-deuterium isotope shift due to the proton and deuteron polarizability is evaluated on the basis of modern experimental data on the structure functions of inelastic lepton-nucleus scattering. The numerical value of this contribution is equal 63\pm 12 Hz.Comment: 5 page

    Relativistic Effects in S-Wave Quarkonium Decay

    Full text link
    The decay widths of S-wave quarkonia (\etc,\etb\to \gg{~~and~~} \J,\U\to\ee) are calculated on the basis of a quasipotential approach. The nontrivial dependence on relative quark motion of decay amplitude is taken into consideration via quarkonium wave function. It is shown that relativistic corrections may be large (10-50 %) and comparable with QCD corrections.Comment: 10 pages, no figure

    Hyperfine structure of the ground state muonic He-3 atom

    Full text link
    On the basis of the perturbation theory in the fine structure constant α\alpha and the ratio of the electron to muon masses we calculate one-loop vacuum polarization and electron vertex corrections and the nuclear structure corrections to the hyperfine splitting of the ground state of muonic helium atom (μ e 23He)(\mu\ e \ ^3_2He). We obtain total result for the ground state hyperfine splitting Δνhfs=4166.471\Delta \nu^{hfs}=4166.471 MHz which improves the previous calculation of Lakdawala and Mohr due to the account of new corrections of orders α5\alpha^5 and α6\alpha^6. The remaining difference between our theoretical result and experimental value of the hyperfine splitting lies in the range of theoretical and experimental errors and requires the subsequent investigation of higher order corrections.Comment: Talk on poster section of XXIV spectroscopy congress, 28 February-5 March 2010, Moscow-Troitsk, Russia, 21 pages, LaTeX, 8 figure

    Muonic hydrogen ground state hyperfine splitting

    Full text link
    Corrections of orders alpha^5, alpha^6 are calculated in the hyperfine splitting of the muonic hydrogen ground state. The nuclear structure effects are taken into account in the one- and two-loop Feynman amplitudes by means of the proton electromagnetic form factors. The modification of the hyperfine splitting part of the Breit potential due to the electron vacuum polarization is considered. Total numerical value of the 1S state hyperfine splitting 182.638 meV in the (mu p) can play the role of proper estimation for the corresponding experiment with the accuracy 30 ppm.Comment: 18 pages, Talk presented at the 11th Lomonosov Conference on Elementary Particle Physics, Moscow State University, August 200

    Theory of muonic hydrogen - muonic deuterium isotope shift

    Full text link
    We calculate the corrections of orders alpha^3, alpha^4 and alpha^5 to the Lamb shift of the 1S and 2S energy levels of muonic hydrogen (mu p) and muonic deuterium (mu d). The nuclear structure effects are taken into account in terms of the proton r_p and deuteron r_d charge radii for the one-photon interaction and by means of the proton and deuteron electromagnetic form factors in the case of one-loop amplitudes. The obtained numerical value of the isotope shift (mu d) - (mu p) for the splitting (1S-2S) 101003.3495 meV can be considered as a reliable estimation for corresponding experiment with the accuracy 10^{-6}. The fine structure interval E(1S)-8E(2S) in muonic hydrogen and muonic deuterium are calculated.Comment: 22 pages, 7 figure

    One-loop corrections of order (Z alpha)^6m_1/m_2, (Z alpha)^7 to the muonium fine structure

    Full text link
    The corrections of order (Z alpha)^6m_1/m_2 and (Z alpha)^7 from one-loop two-photon exchange diagrams to the energy spectra of the hydrogenic atoms are calculated with the help of the Taylor expansion of corresponding integrands. The method of averaging the quasipotential over the wave functions in the d-dimensional coordinate space is formulated. The numerical values of the obtained contributions to the fine structure of muonium, hydrogen and positronium are presented.Comment: Talk given at the XVIth International Workshop High-Energy Physics and Quantum Field Theory (QFTHEP2001), Moscow, Russia, 6-12 Sep 2001, 12 pages, REVTE

    Proton polarizability and the Lamb shift in muonic hydrogen

    Full text link
    The proton structure and proton polarizability corrections to the Lamb shift of electronic hydrogen and muonic hydrogen were evaluated on the basis of modern experimental data on deep inelastic structure functions. Numerical value of proton polarizability contribution to (2P-2S) Lamb shift is equal to 4.4 GHz.Comment: 8 pages, LaTeX2.09, 2 figures, uses linedraw.st

    CLINICAL PRESENTATIONS OF ARTERIAL HYPERTENSION DEPENDING ON THE QTC INTERVAL DURATION OF ECG

    Get PDF
    The relationship between the duration of the complex QTc ECG and clinical signs of arterial hypertension (AH) in 54 patients (16 men and 38 women) 1-3 degree and I-III stage, mean age 58 ± 18 years, was investigated. 3 classes of QT interval duration were allocated: classified shortened ( 320 ms and 440 ms). The binomial distribution of frequencies of studied parameters in classes of the QTc interval for alternative criteria was determined. The duration of the QTc interval in the sampling was 350 ms – 490 ms. The proportion of the normal range (> 320 ms and 440 ms) – 0.15. The probability of occurrence of QTc prolongation ECG increased in elderly patients, obesity, abusing of alcohol, mild and moderate degree and stage II AH, diabetes mellitus, atherosclerotic cardiosclerosis, stable angina functional class (FC) II, HF FC III and II A stage. Dependencies of the elongated QTc of ECG from the sex of the patients have not been established

    New analysis of semileptonic B decays in the relativistic quark model

    Get PDF
    We present the new analysis of the semileptonic B decays in the framework of the relativistic quark model based on the quasipotential approach. Decays both to heavy D^{(*)} and light \pi(\rho) mesons are considered. All relativistic effects are systematically taken into account including contributions of the negative-energy states and the wave function transformation from the rest to moving reference frame. For heavy-to-heavy transitions the heavy quark expansion is applied. Leading and subleading Isgur-Wise functions are determined as the overlap integrals of initial and final meson wave functions. For heavy-to-light transitions the explicit relativistic expressions are used to determine the dependence of the form factors on the momentum transfer squared. Such treatment significantly reduces theoretical uncertainties and increases reliability of obtained predictions. All results for form factors, partial and total decay rates agree well with recent experimental data and unquenched lattice calculations. From this comparison we find the following values of the Cabibbo-Kobayashi-Maskawa matrix elements: |V_{cb}|=(3.85\pm0.15\pm 0.20)*10^{-2} and |V_{ub}|=(3.82\pm0.20\pm0.20)*10^{-3}, where the first error is experimental and the second one is theoretical.Comment: 25 pages, 11 figure

    Hyperfine Structure of S-States in Muonic Helium Ion

    Full text link
    Corrections of orders alpha^5 and alpha^6 are calculated in the hyperfine splittings of 1S and 2S - energy levels in the ion of muonic helium. The electron vacuum polarization effects, the nuclear structure corrections and recoil corrections are taken into account. The obtained numerical values of the hyperfine splittings -1334.56 meV (1S state), -166.62 meV (2S state) can be considered as a reliable estimate for the comparison with the future experimental data. The hyperfine splitting interval Delta_{12}=(8 Delta E^{hfs}(2S)- Delta E^{hfs}(1S)) = 1.64 meV can be used for the check of quantum electrodynamics.Comment: 14 pages, 5 figure
    • …
    corecore