4 research outputs found

    T Cells Aid in Limiting Pathogen Burden and in Enhancing B1 and B2 Cell Antibody Responses to Membrane Glycolipid and the Surface Lipoprotein Decorin-Binding Protein A during Borrelia burgdorferi Infection: A Dissertation

    Get PDF
    Murine infection by the Lyme disease spirochete, B. burgdorferi, results in the generation of pathogen-specific antibody that can provide protection against Lyme disease, but the cells involved in this response are poorly characterized. T cells are not required for generating a protective antibody response to B. burgdorferi infection, but their exact role in providing protection against tissue colonization had not been previously determined. We found that TCRβxδ;-/- mice were susceptible to high pathogen loads and decreased antibody titers, but inhibition of CD40L-dependent interactions resulted in partial protection suggesting that a portion of the help provided by T cells was not dependent on CD40L-CD40 interactions between T and B cells. RAG1-/- mice reconstituted with either un-fractionated or B1-enriched peritoneal cells from previously infected mice generated B. burgdorferi-specific antibody, and upon spirochetal challenge suffered significantly lower levels of pathogen load in the joint and heart. Peritoneal cells from previously infected TCRβxδ-/- mice or B2-enriched or B1-purified peritoneal cells conferred little to only moderate protection, suggesting T cells play an important role in protection against spirochetal infection the joint. Consistent with this, T cells from previously infected donor mice, when transferred with B1 or B2 cells into RAG1-/- mice, generated increased antibody titers and were capable of diminishing bacterial burden in the joint and heart. A previously identified class of protective antibody is directed against the spirochetal surface lipoprotein DbpA, and we found that DbpA is a prominent protein antigen recognized by RAG1-/- mice reconstituted with B1-enriched peritoneal cells. Additionally, we found that mice reconstituted with B1 cells also make antibody directed towards the spirochetal glycolipid antigen, BbGL-IIc, which is recognized by Vα14iNKT cells. Consistent with the idea that T cells are important in providing protection against spirochetal infection, RAG1-/- mice reconstituted with B1 and T cells generated a more robust response against DbpA and BbGL-IIc. These results support the hypothesis that T cells act with B1 cells in a CD40L-independent manner to promote the production of antibodies that play an important role in protection of the joint from spirochetal infection

    Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death

    Get PDF
    A number of pathogens cause host cell death upon infection, and Yersinia pestis, infamous for its role in large pandemics such as the Black Death in medieval Europe, induces considerable cytotoxicity. The rapid killing of macrophages induced by Y. pestis, dependent upon type III secretion system effector Yersinia outer protein J (YopJ), is minimally affected by the absence of caspase-1, caspase-11, Fas ligand, and TNF. Caspase-8 is known to mediate apoptotic death in response to infection with several viruses and to regulate programmed necrosis (necroptosis), but its role in bacterially induced cell death is poorly understood. Here we provide genetic evidence for a receptor-interacting protein (RIP) kinase-caspase-8-dependent macrophage apoptotic death pathway after infection with Y. pestis, influenced by Toll-like receptor 4-TIR-domain-containing adapter-inducing interferon-β (TLR4-TRIF). Interestingly, macrophages lacking either RIP1, or caspase-8 and RIP3, also had reduced infection-induced production of IL-1β, IL-18, TNF, and IL-6; impaired activation of the transcription factor NF-κB; and greatly compromised caspase-1 processing. Cleavage of the proform of caspase-1 is associated with triggering inflammasome activity, which leads to the maturation of IL-1β and IL-18, cytokines important to host responses against Y. pestis and many other infectious agents. Our results identify a RIP1-caspase-8/RIP3-dependent caspase-1 activation pathway after Y. pestis challenge. Mice defective in caspase-8 and RIP3 were also highly susceptible to infection and displayed reduced proinflammatory cytokines and myeloid cell death. We propose that caspase-8 and the RIP kinases are key regulators of macrophage cell death, NF-κB and inflammasome activation, and host resistance after Y. pestis infection

    (De-) oiling inflammasomes

    Get PDF
    Activation of inflammasome signaling can produce harmful inflammation. In this issue of Immunity, Yan et al. (2013) suggest that omega-3 fatty acids commonly found in marine oils can suppress activation of NLRP3 and NLRP1b inflammasomes

    Inflammasomes and host defenses against bacterial infections

    No full text
    The inflammasome has emerged as an important molecular protein complex which initiates proteolytic processing of pro-IL-1β and pro-IL-18 into mature inflammatory cytokines. In addition, inflammasomes initiate pyroptotic cell death that may be independent of those cytokines. Inflammasomes are central to elicit innate immune responses against many pathogens, and are key components in the induction of host defenses following bacterial infection. Here, we review recent discoveries related to NLRP1, NLRP3, NLRC4, NLRP6, NLRP7, NLRP12 and AIM2-mediated recognition of bacteria. Mechanisms for inflammasome activation and regulation are now suggested to involve kinases such as PKR and PKCδ, ligand binding proteins such as the NAIPs, and caspase-11 and caspase-8 in addition to caspase-1. Future research will determine how specific inflammasome components pair up in optimal responses to specific bacteria
    corecore