1,090 research outputs found
Calabi-Yau 3-folds from 2-folds
We consider type IIA string theory on a Calabi-Yau 2-fold with D6-branes
wrapping 2-cycles in the 2-fold. We find a complete set of conditions on the
supergravity solution for any given wrapped brane configuration in terms of
SU(2) structures. We reduce the problem of finding a supergravity solution for
the wrapped branes to finding a harmonic function on RCY. We then
lift this solution to 11-dimensions as a product of R and a
Calabi-Yau 3-fold. We show how the metric on the 3-fold is determined in terms
of the wrapped brane solution. We write down the distinguished (3,0) form and
the K{\"a}hler form of the 3-fold in terms of structures defined on the base
2-d complex manifold. We discuss the topology of the 3-fold in terms of the
D6-branes and the underlying 2-fold. We show that in addition to the
non-trivial cycles inherited from the underlying 2-fold there are new
2-cycles. We construct closed (1,1) forms corresponding to these new cycles. We
also display some explicit examples. One of our examples is that of D6-branes
wrapping the 2-cycle in an A ALE space, the resulting 3-fold has
, where is the number of D6-branes.Comment: 30 page
GFINDer: Genome Function INtegrated Discoverer through dynamic annotation, statistical analysis, and mining
Statisticalandclustering analyses ofgeneexpression results from high-density microarray experiments produce lists of hundreds of genes regulated differentially, or with particular expression profiles, in the conditions under study. Independent of the microarray platforms and analysis methods used, these lists must be biologically interpreted to gain a better knowledge of the patho-physiological phenomena involved. To this end, numerous biological annotations are available within heterogeneous and widely distributed databases. Although several tools have been developed for annotating lists of genes, most of them do not give methods for evaluating the relevance of the annotations provided, or for estimating the functional bias introduced by the gene set on the array used to identify the gene list considered. We developed Genome Functional INtegrated Discoverer (GFINDer ), a web server able to automatically provide large-scale lists of user-classified genes with functional profiles biologically characterizing the different gene classes in the list. GFINDer automatically retrieves annotations of several functional categories from different sources, identifies the categories enriched in each class of a user-classified gene list and calculates statistical significance values for each category. Moreover, GFINDer enables the functional classification of genes according to mined functional categories and the statistical analysis is of the classifications obtained, aiding better interpretationof microarray experiment results. GFINDer is available online at http://www.medinfopoli.polimi.it/GFINDer/
The extreme function theory for damage detection: An application to civil and aerospace structures
Any damaged condition is a rare occurrence for mechanical systems, as it is very unlikely to be observed. Thus, it represents an extreme deviation from the median of its probability distribu-tion. It is, therefore, necessary to apply proper statistical solutions, i.e., Rare Event Modelling (REM). The classic tool for this aim is the Extreme Value Theory (EVT), which deals with uni-or multivariate scalar values. The Extreme Function Theory (EFT), on the other hand, is defined by enlarging the fundamental EVT concepts to whole functions. When combined with Gaussian Process Regres-sion (GPR), the EFT is perfectly suited for mode shape-based outlier detection. In fact, it is possible to investigate the structureâs normal modes as a whole rather than focusing on their constituent data points, with quantifiable advantages. This provides a useful tool for Structural Health Monitoring, especially to reduce false alarms. This recently proposed methodology is here tested and validated both numerically and experimentally for different examples coming from Civil and Aerospace Engineering applications. One-dimensional beamlike elements with several boundary conditions are considered, as well as a two-dimensional plate-like spar and a frame structure
From ten to four and back again: how to generalize the geometry
We discuss the four-dimensional N=1 effective approach in the study of warped
type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat
Minkowski space-time. The non-trivial warping makes it natural to use a
supergravity formulation invariant under local complexified Weyl
transformations. We obtain the classical superpotential from a standard
argument involving domain walls and generalized calibrations and show how the
resulting F-flatness and D-flatness equations exactly reproduce the full
ten-dimensional supersymmetry equations. Furthermore, we consider the effect of
non-perturbative corrections to this superpotential arising from gaugino
condensation or Euclidean D-brane instantons. For the latter we derive the
supersymmetry conditions in N=1 flux vacua in full generality. We find that the
non-perturbative corrections induce a quantum deformation of the internal
generalized geometry. Smeared instantons allow to understand KKLT-like AdS
vacua from a ten-dimensional point of view. On the other hand, non-smeared
instantons in IIB warped Calabi-Yau compactifications 'destabilize' the
Calabi-Yau complex structure into a genuine generalized complex one. This
deformation gives a geometrical explanation of the non-trivial superpotential
for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small
inaccuracies in eqs. (2.6a) and (5.16
Dirac equation for the supermembrane in a background with fluxes from a component description of the D=11 supergravity-supermembrane interacting system
We present a simple derivation of the 'Dirac' equation for the supermembrane
fermionic field in a D=11 supergravity background with fluxes by using a
complete but gauge-fixed description of the supergravity-supermembrane
interacting system previously developed. We also discuss the contributions
linear in the supermembrane fermions -the Goldstone fields for the local
supersymmetry spontaneously broken by the superbrane- to the field equations of
the supergravity-supermembrane interacting system. The approach could also be
applied to more complicated dynamical systems such as those involving the
M5-brane and the D=10 Dirichlet branes.Comment: 1+22 pages, JHEP style. v2: cosmetic changes and references added to
conform to the JHEP published versio
Noncommutative Einstein-AdS Gravity in three Dimensions
We present a Lorentzian version of three-dimensional noncommutative
Einstein-AdS gravity by making use of the Chern-Simons formulation of pure
gravity in 2+1 dimensions. The deformed action contains a real, symmetric
metric and a real, antisymmetric tensor that vanishes in the commutative limit.
These fields are coupled to two abelian gauge fields. We find that this theory
of gravity is invariant under a class of transformations that reduce to
standard diffeomorphisms once the noncommutativity parameter is set to zero.Comment: 11 pages, LaTeX, minor errors corrected, references adde
Open String Wavefunctions in Warped Compactifications
We analyze the wavefunctions for open strings in warped compactifications,
and compute the warped Kahler potential for the light modes of a probe D-brane.
This analysis not only applies to the dynamics of D-branes in warped
backgrounds, but also allows to deduce warping corrections to the closed string
Kahler metrics via their couplings to open strings. We consider in particular
the spectrum of D7-branes in warped Calabi-Yau orientifolds, which provide a
string theory realizations of the Randall-Sundrum scenario. We find that
certain background fluxes, necessary in the presence of warping, couple to the
fermionic wavefunctions and qualitatively change their behavior. This modified
dependence of the wavefunctions are needed for consistency with supersymmetry,
though it is present in non-supersymmetric vacua as well. We discuss the
deviations of our setup from the RS scenario and, as an application of our
results, compute the warping corrections to Yukawa couplings in a simple model.
Our analysis is performed both with and without the presence of D-brane
world-volume flux, as well as for the case of backgrounds with varying dilaton.Comment: 52 pages, refs. added, minor correction
The energy and stability of D-term strings
Cosmic strings derived from string theory, supergravity or any theory of
choice should be stable if we hope to observe them. In this paper we consider
D-term strings in D=4, N=1 supergravity with a constant Fayet-Iliopoulos term.
We show that the positive deficit angle supersymmetric D-term string is
non-perturbatively stable by using standard Witten-Nester techniques to prove a
positive energy theorem. Particular attention is paid to the negative deficit
angle D-term string, which is known to violate the dominant energy condition.
Within the class of string solutions we consider, this violation implies that
the negative deficit angle D-term string must have a naked pathology and
therefore the positive energy theorem we prove does not apply to it. As an
interesting aside, we show that the Witten-Nester charge calculates the total
gravitational energy of the D-term string without the need for a cut-off, which
may not have been expected.Comment: 18 pages. v2: minor changes and references adde
Deformations of calibrated D-branes in flux generalized complex manifolds
We study massless deformations of generalized calibrated cycles, which
describe, in the language of generalized complex geometry, supersymmetric
D-branes in N=1 supersymmetric compactifications with fluxes. We find that the
deformations are classified by the first cohomology group of a Lie algebroid
canonically associated to the generalized calibrated cycle, seen as a
generalized complex submanifold with respect to the integrable generalized
complex structure of the bulk. We provide examples in the SU(3) structure case
and in a `genuine' generalized complex structure case. We discuss cases of
lifting of massless modes due to world-volume fluxes, background fluxes and a
generalized complex structure that changes type.Comment: 52 pages, added references, added comment on ellipticity in appendix
B, made minor changes according to instructions referee JHE
Optimization of hybrid sol-gel coating for dropwise condensation of pure steam
We developed hybrid organic-inorganic sol-gel silica coatings with good durability in harsh environment (high temperatures, high vapor velocities) and with slightly hydrophobic behavior, sufficient to promote dropwise condensation (DWC) of pure steam. DWC is a very promising mechanism in new trends of thermal management and power generation systems to enhance the heat transfer during condensation as compared to film-wise condensation (FWC). The sol-gel coatings have been prepared from methyl triethoxy silane (MTES) and tetraethyl-orthosilicate (TEOS) and deposited on an aluminum substrate. The coatings were optimized in terms of precursor ratio and annealing temperature highlighting potentials and limits of such mixtures. A comprehensive surface characterization before and after saturated steam condensation tests has been performed and related to the thermal measurements for evaluating the heat transfer augmentation as compared to FWC obtained on untreated aluminum surfaces. The results showed that the developed hybrid organic-inorganic sol-gel silica coatings are promising DWC promoters
- âŠ