6 research outputs found
Recommended from our members
Noninvasive, low-cost RNA-sequencing enhances discovery potential of transcriptome studies
Transcriptome studies disentangle functional mechanisms of gene expression regulation and may lend key insights into disease mechanisms. However, the cost of RNA-sequencing and types of tissues currently assayed pose major limitations to study expansion and disease-relevant discovery. This thesis develops methods for sampling noninvasive biospecimens for transcriptome studies, investigating their technical and biological characteristics, and assessing the feasibility of using noninvasive samples in transcriptomic and clinical applications.
Chapter 1 explores the technical and biological features of four potential noninvasive sample types (buccal swabs, hair follicles, saliva, and urine cell pellets) in a pilot study of 19 individuals whereby four separate collections of each tissue were performed (i.e. 76 samples/tissue, 304 samples in total). From this data, consistency of library preparation, cell type content, replication of GTEx cis-eQTLs, and disease applications were assessed. In all, hair follicles and urine cell pellets were found to be most promising for future applications.
Chapter 2 investigates the scaling potential of noninvasive sampling in SPIROMICS, a COPD clinical cohort. To do so, 140 hair follicle and 110 buccal swab samples were collected from seven different clinical sites. Consistency of sample quality was observed to be high for hair follicles, and hair cell type abundance estimates were consistent within SPIROMICS and compared to the 19 subject pilot study. Mapping of cis-eQTLs in hair revealed 339 associations not identified in any prior study. These cis-eQTLs show higher replication in GTEx tissues that share cell types with hair follicles, indicating hair follicles may indeed capture gene expression regulatory mechanisms found in more invasive tissue types of the body.
This thesis suggests future use of noninvasive sampling will facilitate discovery by increasing sample sizes in more diverse populations and in tissues with greater cell type diversity and biological relatedness to disease mechanisms. Moreover, the nature of noninvasive sampling enables complex, longitudinal study designs with greater ability to capture context-dependent mechanisms of genetic regulation not currently able to be interrogated
Evaluation of noninvasive biospecimens for transcriptome studies
Abstract Transcriptome studies disentangle functional mechanisms of gene expression regulation and may elucidate the underlying biology of disease processes. However, the types of tissues currently collected typically assay a single post-mortem timepoint or are limited to investigating cell types found in blood. Noninvasive tissues may improve disease-relevant discovery by enabling more complex longitudinal study designs, by capturing different and potentially more applicable cell types, and by increasing sample sizes due to reduced collection costs and possible higher enrollment from vulnerable populations. Here, we develop methods for sampling noninvasive biospecimens, investigate their performance across commercial and in-house library preparations, characterize their biology, and assess the feasibility of using noninvasive tissues in a multitude of transcriptomic applications. We collected buccal swabs, hair follicles, saliva, and urine cell pellets from 19 individuals over three to four timepoints, for a total of 300 unique biological samples, which we then prepared with replicates across three library preparations, for a final tally of 472 transcriptomes. Of the four tissues we studied, we found hair follicles and urine cell pellets to be most promising due to the consistency of sample quality, the cell types and expression profiles we observed, and their performance in disease-relevant applications. This is the first study to thoroughly delineate biological and technical features of noninvasive samples and demonstrate their use in a wide array of transcriptomic and clinical analyses. We anticipate future use of these biospecimens will facilitate discovery and development of clinical applications
Disulfide Cross-Linked Phosphorylcholine Micelles for Triggered Release of Camptothecin
A series
of block copolymers based on 2-methacryloyloxyethyl phosphorylcholine
(MPC) were synthesized by reversible addition–fragmentation
chain transfer (RAFT) polymerization. Incorporation of dihydrolipoic
acid (DHLA) into the hydrophobic block led to formation of block copolymer
micelles in water. The micelles were between 15 and 30 nm in diameter,
as characterized by dynamic light scattering (DLS), with some size
control achieved by adjusting the hydrophobic/hydrophilic balance.
Cross-linked micelles were prepared by disulfide formation, and observed
to be stable in solution for weeks. The micelles proved amenable to
disassembly when treated with a reducing agent, such as dithiothreitol
(DTT), and represent a potential delivery platform for chemotherapeutic
agents. As a proof-of-concept, camptothecin (CPT) was conjugated to
the polymer scaffold through a disulfide linkage, and release of the
drug from the micelle was monitored by fluorescence spectroscopy.
These CPT-loaded prodrug micelles showed a reduction in release rate
compared to physically encapsulated CPT. The use of disulfide conjugation
facilitated drug release under reducing conditions, with a half-life
(<i>t</i><sub>1/2</sub>) of 5.5 h in the presence of 3 mM
DTT, compared to 28 h in PBS. The toxicity of the micellar prodrugs
was evaluated in cell culture against human breast (MCF7) and colorectal
(COLO205) cancer cell lines
Recommended from our members
Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium.
BackgroundThe large airway epithelial barrier provides one of the first lines of defense against respiratory viruses, including SARS-CoV-2 that causes COVID-19. Substantial inter-individual variability in individual disease courses is hypothesized to be partially mediated by the differential regulation of the genes that interact with the SARS-CoV-2 virus or are involved in the subsequent host response. Here, we comprehensively investigated non-genetic and genetic factors influencing COVID-19-relevant bronchial epithelial gene expression.MethodsWe analyzed RNA-sequencing data from bronchial epithelial brushings obtained from uninfected individuals. We related ACE2 gene expression to host and environmental factors in the SPIROMICS cohort of smokers with and without chronic obstructive pulmonary disease (COPD) and replicated these associations in two asthma cohorts, SARP and MAST. To identify airway biology beyond ACE2 binding that may contribute to increased susceptibility, we used gene set enrichment analyses to determine if gene expression changes indicative of a suppressed airway immune response observed early in SARS-CoV-2 infection are also observed in association with host factors. To identify host genetic variants affecting COVID-19 susceptibility in SPIROMICS, we performed expression quantitative trait (eQTL) mapping and investigated the phenotypic associations of the eQTL variants.ResultsWe found that ACE2 expression was higher in relation to active smoking, obesity, and hypertension that are known risk factors of COVID-19 severity, while an association with interferon-related inflammation was driven by the truncated, non-binding ACE2 isoform. We discovered that expression patterns of a suppressed airway immune response to early SARS-CoV-2 infection, compared to other viruses, are similar to patterns associated with obesity, hypertension, and cardiovascular disease, which may thus contribute to a COVID-19-susceptible airway environment. eQTL mapping identified regulatory variants for genes implicated in COVID-19, some of which had pheWAS evidence for their potential role in respiratory infections.ConclusionsThese data provide evidence that clinically relevant variation in the expression of COVID-19-related genes is associated with host factors, environmental exposures, and likely host genetic variation
Recommended from our members
Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium.
BackgroundThe large airway epithelial barrier provides one of the first lines of defense against respiratory viruses, including SARS-CoV-2 that causes COVID-19. Substantial inter-individual variability in individual disease courses is hypothesized to be partially mediated by the differential regulation of the genes that interact with the SARS-CoV-2 virus or are involved in the subsequent host response. Here, we comprehensively investigated non-genetic and genetic factors influencing COVID-19-relevant bronchial epithelial gene expression.MethodsWe analyzed RNA-sequencing data from bronchial epithelial brushings obtained from uninfected individuals. We related ACE2 gene expression to host and environmental factors in the SPIROMICS cohort of smokers with and without chronic obstructive pulmonary disease (COPD) and replicated these associations in two asthma cohorts, SARP and MAST. To identify airway biology beyond ACE2 binding that may contribute to increased susceptibility, we used gene set enrichment analyses to determine if gene expression changes indicative of a suppressed airway immune response observed early in SARS-CoV-2 infection are also observed in association with host factors. To identify host genetic variants affecting COVID-19 susceptibility in SPIROMICS, we performed expression quantitative trait (eQTL) mapping and investigated the phenotypic associations of the eQTL variants.ResultsWe found that ACE2 expression was higher in relation to active smoking, obesity, and hypertension that are known risk factors of COVID-19 severity, while an association with interferon-related inflammation was driven by the truncated, non-binding ACE2 isoform. We discovered that expression patterns of a suppressed airway immune response to early SARS-CoV-2 infection, compared to other viruses, are similar to patterns associated with obesity, hypertension, and cardiovascular disease, which may thus contribute to a COVID-19-susceptible airway environment. eQTL mapping identified regulatory variants for genes implicated in COVID-19, some of which had pheWAS evidence for their potential role in respiratory infections.ConclusionsThese data provide evidence that clinically relevant variation in the expression of COVID-19-related genes is associated with host factors, environmental exposures, and likely host genetic variation