22,529 research outputs found

    Probability distribution of the order parameter

    Full text link
    The probability distribution of the order parameter is exploited in order to obtain the criticality of magnetic systems. Monte Carlo simulations have been employed by using single spin flip Metropolis algorithm aided by finite-size scaling and histogram reweighting techniques. A method is proposed to obtain this probability distribution even when the transition temperature of the model is unknown. A test is performed on the two-dimensional spin-1/2 and spin-1 Ising model and the results show that the present procedure can be quite efficient and accurate to describe the criticality of the system.Comment: 5 pages, 7 figures, to appear in Braz. J. Phys. 34, June 200

    Vorton Formation

    Get PDF
    In this paper we present the first analytic model for vorton formation. We start by deriving the microscopic string equations of motion in Witten's superconducting model, and show that in the relevant chiral limit these coincide with the ones obtained from the supersonic elastic models of Carter and Peter. We then numerically study a number of solutions of these equations of motion and thereby suggest criteria for deciding whether a given superconducting loop configuration can form a vorton. Finally, using a recently developed model for the evolution of currents in superconducting strings we conjecture, by comparison with these criteria, that string networks formed at the GUT phase transition should produce no vortons. On the other hand, a network formed at the electroweak scale can produce vortons accounting for up to 6% of the critical density. Some consequences of our results are discussed.Comment: 41 pages; color figures 3-6 not included, but available from authors. To appear in Phys. Rev.

    Probing the gluon density of the proton in the exclusive photoproduction of vector mesons at the LHC: A phenomenological analysis

    Full text link
    The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken - xx variable and low values of the hard scale Q2Q^2. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon - hadron and hadron - hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrizations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the leading logarithmic formalism. We perform a fit of the normalization of the γh\gamma h cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small - xx and low Q2Q^2.Comment: 8 pages, 6 figures, 1 table. Version published in European Physical Journal

    Clustering Properties of Dynamical Dark Energy Models

    Full text link
    We provide a generic but physically clear discussion of the clustering properties of dark energy models. We explicitly show that in quintessence-type models the dark energy fluctuations, on scales smaller than the Hubble radius, are of the order of the perturbations to the Newtonian gravitational potential, hence necessarily small on cosmological scales. Moreover, comparable fluctuations are associated with different gauge choices. We also demonstrate that the often used homogeneous approximation is unrealistic, and that the so-called dark energy mutation is a trivial artifact of an effective, single fluid description. Finally, we discuss the particular case where the dark energy fluid is coupled to dark matter.Comment: 5 page

    The influence of the Al stabilizer layer thickness on the normal zone propagation velocity in high current superconductors

    Full text link
    The stability of high-current superconductors is challenging in the design of superconducting magnets. When the stability requirements are fulfilled, the protection against a quench must still be considered. A main factor in the design of quench protection systems is the resistance growth rate in the magnet following a quench. The usual method for determining the resistance growth in impregnated coils is to calculate the longitudinal velocity with which the normal zone propagates in the conductor along the coil windings. Here, we present a 2D numerical model for predicting the normal zone propagation velocity in Al stabilized Rutherford NbTi cables with large cross section. By solving two coupled differential equations under adiabatic conditions, the model takes into account the thermal diffusion and the current redistribution process following a quench. Both the temperature and magnetic field dependencies of the superconductor and the metal cladding materials properties are included. Unlike common normal zone propagation analyses, we study the influence of the thickness of the cladding on the propagation velocity for varying operating current and magnetic field. To assist in the comprehension of the numerical results, we also introduce an analytical formula for the longitudinal normal zone propagation. The analysis distinguishes between low-current and high-current regimes of normal zone propagation, depending on the ratio between the characteristic times of thermal and magnetic diffusion. We show that above a certain thickness, the cladding acts as a heat sink with a limited contribution to the acceleration of the propagation velocity with respect to the cladding geometry. Both numerical and analytical results show good agreement with experimental data.Comment: To be published in Physics Procedia (ICEC 25 conference special issue
    corecore