44,711 research outputs found

    UPMASK: unsupervised photometric membership assignment in stellar clusters

    Full text link
    We develop a method for membership assignment in stellar clusters using only photometry and positions. The method, UPMASK, is aimed to be unsupervised, data driven, model free, and to rely on as few assumptions as possible. It is based on an iterative process, principal component analysis, clustering algorithm, and kernel density estimations. Moreover, it is able to take into account arbitrary error models. An implementation in R was tested on simulated clusters that covered a broad range of ages, masses, distances, reddenings, and also on real data of cluster fields. Running UPMASK on simulations showed that it effectively separates cluster and field populations. The overall spatial structure and distribution of cluster member stars in the colour-magnitude diagram were recovered under a broad variety of conditions. For a set of 360 simulations, the resulting true positive rates (a measurement of purity) and member recovery rates (a measurement of completeness) at the 90% membership probability level reached high values for a range of open cluster ages (107.1−109.510^{7.1}-10^{9.5} yr), initial masses (0.5−10×1030.5-10\times10^3M_{\sun}) and heliocentric distances (0.5−4.00.5-4.0 kpc). UPMASK was also tested on real data from the fields of the open cluster Haffner~16 and of the closely projected clusters Haffner~10 and Czernik~29. These tests showed that even for moderate variable extinction and cluster superposition, the method yielded useful cluster membership probabilities and provided some insight into their stellar contents. The UPMASK implementation will be available at the CRAN archive.Comment: 12 pages, 13 figures, accepted for publication in Astronomy and Astrophysic

    A comparison of evolutionary tracks for single Galactic massive stars

    Full text link
    In this paper, we compare the currently available evolutionary tracks for Galactic massive stars. Our main goal is to highlight the uncertainties on the predicted evolutionary paths. We compute stellar evolution models with the codes MESA and STAREVOL. We compare our results with those of four published grids of massive stellar evolution models (Geneva, STERN, Padova and FRANEC codes). We first investigate the effects of overshooting, mass loss, metallicity, chemical composition. We subsequently focus on rotation. Finally, we compare the predictions of published evolutionary models with the observed properties of a large sample of Galactic stars. We find that all models agree well for the main sequence evolution. Large differences in luminosity and temperatures appear for the post main sequence evolution, especially in the cool part of the HR diagram. Depending on the physical ingredients, tracks of different initial masses can overlap, rendering any mass estimate doubtful. For masses between 7 and 20 Msun, we find that the main sequence width is slightly too narrow in the Geneva models including rotation. It is (much) too wide for the (STERN) FRANEC models. This conclusion is reached from the investigation of the HR diagram and from the evolution of the surface velocity as a function of surface gravity. An overshooting parameter alpha between 0.1 and 0.2 in models with rotation is preferred to reproduce the main sequence width. Determinations of surface abundances of carbon and nitrogen are partly inconsistent and cannot be used at present to discriminate between the predictions of published tracks. For stars with initial masses larger than about 60 Msun, the FRANEC models with rotation can reproduce the observations of luminous O supergiants and WNh stars, while the Geneva models remain too hot.Comment: 17 pages, 12 figures. Accepted by Astronomy & Astrophysic
    • …
    corecore