2,302 research outputs found
High frequency oscillations as a correlate of visual perception
“NOTICE: this is the author’s version of a work that was accepted for publication in International journal of psychophysiology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International journal of psychophysiology , 79, 1, (2011) DOI 10.1016/j.ijpsycho.2010.07.004Peer reviewedPostprin
On the Security of the Automatic Dependent Surveillance-Broadcast Protocol
Automatic dependent surveillance-broadcast (ADS-B) is the communications
protocol currently being rolled out as part of next generation air
transportation systems. As the heart of modern air traffic control, it will
play an essential role in the protection of two billion passengers per year,
besides being crucial to many other interest groups in aviation. The inherent
lack of security measures in the ADS-B protocol has long been a topic in both
the aviation circles and in the academic community. Due to recently published
proof-of-concept attacks, the topic is becoming ever more pressing, especially
with the deadline for mandatory implementation in most airspaces fast
approaching.
This survey first summarizes the attacks and problems that have been reported
in relation to ADS-B security. Thereafter, it surveys both the theoretical and
practical efforts which have been previously conducted concerning these issues,
including possible countermeasures. In addition, the survey seeks to go beyond
the current state of the art and gives a detailed assessment of security
measures which have been developed more generally for related wireless networks
such as sensor networks and vehicular ad hoc networks, including a taxonomy of
all considered approaches.Comment: Survey, 22 Pages, 21 Figure
Biometric Backdoors: A Poisoning Attack Against Unsupervised Template Updating
In this work, we investigate the concept of biometric backdoors: a template
poisoning attack on biometric systems that allows adversaries to stealthily and
effortlessly impersonate users in the long-term by exploiting the template
update procedure. We show that such attacks can be carried out even by
attackers with physical limitations (no digital access to the sensor) and zero
knowledge of training data (they know neither decision boundaries nor user
template). Based on the adversaries' own templates, they craft several
intermediate samples that incrementally bridge the distance between their own
template and the legitimate user's. As these adversarial samples are added to
the template, the attacker is eventually accepted alongside the legitimate
user. To avoid detection, we design the attack to minimize the number of
rejected samples.
We design our method to cope with the weak assumptions for the attacker and
we evaluate the effectiveness of this approach on state-of-the-art face
recognition pipelines based on deep neural networks. We find that in scenarios
where the deep network is known, adversaries can successfully carry out the
attack over 70% of cases with less than ten injection attempts. Even in
black-box scenarios, we find that exploiting the transferability of adversarial
samples from surrogate models can lead to successful attacks in around 15% of
cases. Finally, we design a poisoning detection technique that leverages the
consistent directionality of template updates in feature space to discriminate
between legitimate and malicious updates. We evaluate such a countermeasure
with a set of intra-user variability factors which may present the same
directionality characteristics, obtaining equal error rates for the detection
between 7-14% and leading to over 99% of attacks being detected after only two
sample injections.Comment: 12 page
- …