10,482 research outputs found
On the strategy frequency problem in batch Minority Games
Ergodic stationary states of Minority Games with S strategies per agent can
be characterised in terms of the asymptotic probabilities with which
an agent uses of his strategies. We propose here a simple and general
method to calculate these quantities in batch canonical and grand-canonical
models. Known analytic theories are easily recovered as limiting cases and, as
a further application, the strategy frequency problem for the batch
grand-canonical Minority Game with S=2 is solved. The generalization of these
ideas to multi-asset models is also presented. Though similarly based on
response function techniques, our approach is alternative to the one recently
employed by Shayeghi and Coolen for canonical batch Minority Games with
arbitrary number of strategies.Comment: 17 page
On the transition to efficiency in Minority Games
The existence of a phase transition with diverging susceptibility in batch
Minority Games (MGs) is the mark of informationally efficient regimes and is
linked to the specifics of the agents' learning rules. Here we study how the
standard scenario is affected in a mixed population game in which agents with
the `optimal' learning rule (i.e. the one leading to efficiency) coexist with
ones whose adaptive dynamics is sub-optimal. Our generic finding is that any
non-vanishing intensive fraction of optimal agents guarantees the existence of
an efficient phase. Specifically, we calculate the dependence of the critical
point on the fraction of `optimal' agents focusing our analysis on three
cases: MGs with market impact correction, grand-canonical MGs and MGs with
heterogeneous comfort levels.Comment: 12 pages, 3 figures; contribution to the special issue "Viewing the
World through Spin Glasses" in honour of David Sherrington on the occasion of
his 65th birthda
Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data
We propose an improved methodology to constrain spatial variations of the
fine structure constant using clusters of galaxies. We use the {\it Planck}
2013 data to measure the thermal Sunyaev-Zeldovich effect at the location of
618 X-ray selected clusters. We then use a Monte Carlo Markov Chain algorithm
to obtain the temperature of the Cosmic Microwave Background at the location of
each galaxy cluster. When fitting three different phenomenological
parameterizations allowing for monopole and dipole amplitudes in the value of
the fine structure constant we improve the results of earlier analysis
involving clusters and the CMB power spectrum, and we also found that the
best-fit direction of a hypothetical dipole is compatible with the direction of
other known anomalies. Although the constraining power of our current datasets
do not allow us to test the indications of a fine-structure constant dipole
obtained though high-resolution optical/UV spectroscopy, our results do
highlight that clusters of galaxies will be a very powerful tool to probe
fundamental physics at low redshift.Comment: 11 pages, 5 figures and 3 tables. Accepted for publication in
Physical Review
Recommended from our members
Hubbard ladders in a magnetic field
The behavior of a two leg Hubbard ladder in the presence of a magnetic field is studied by means of Abelian bosonization. We predict the appearance of a new (doping dependent) plateau in the magnetization curve of a doped 2-leg spin ladder in a wide range of couplings. We also discuss the extension to N-leg Hubbard ladders
Von Neumann's expanding model on random graphs
Within the framework of Von Neumann's expanding model, we study the maximum
growth rate r achievable by an autocatalytic reaction network in which
reactions involve a finite (fixed or fluctuating) number D of reagents. r is
calculated numerically using a variant of the Minover algorithm, and
analytically via the cavity method for disordered systems. As the ratio between
the number of reactions and that of reagents increases the system passes from a
contracting (r1). These results extend the
scenario derived in the fully connected model (D\to\infinity), with the
important difference that, generically, larger growth rates are achievable in
the expanding phase for finite D and in more diluted networks. Moreover, the
range of attainable values of r shrinks as the connectivity increases.Comment: 20 page
Stationary states of a spherical Minority Game with ergodicity breaking
Using generating functional and replica techniques, respectively, we study
the dynamics and statics of a spherical Minority Game (MG), which in contrast
with a spherical MG previously presented in J.Phys A: Math. Gen. 36 11159
(2003) displays a phase with broken ergodicity and dependence of the
macroscopic stationary state on initial conditions. The model thus bears more
similarity with the original MG. Still, all order parameters including the
volatility can computed in the ergodic phases without making any
approximations. We also study the effects of market impact correction on the
phase diagram. Finally we discuss a continuous-time version of the model as
well as the differences between on-line and batch update rules. Our analytical
results are confirmed convincingly by comparison with numerical simulations. In
an appendix we extend the analysis of the earlier spherical MG to a model with
general time-step, and compare the dynamics and statics of the two spherical
models.Comment: 26 pages, 8 figures; typo correcte
Two-dimensional conical dispersion in ZrTe5 evidenced by optical spectroscopy
Zirconium pentatelluride was recently reported to be a 3D Dirac semimetal,
with a single conical band, located at the center of the Brillouin zone. The
cone's lack of protection by the lattice symmetry immediately sparked vast
discussions about the size and topological/trivial nature of a possible gap
opening. Here we report on a combined optical and transport study of ZrTe5,
which reveals an alternative view of electronic bands in this material. We
conclude that the dispersion is approximately linear only in the a-c plane,
while remaining relatively flat and parabolic in the third direction (along the
b axis). Therefore, the electronic states in ZrTe5 cannot be described using
the model of 3D Dirac massless electrons, even when staying at energies well
above the band gap 6 meV found in our experiments at low temperatures.Comment: Physical Review Letters 122, 217402 (2019). Corrected acknowledgment
How glassy are neural networks?
In this paper we continue our investigation on the high storage regime of a
neural network with Gaussian patterns. Through an exact mapping between its
partition function and one of a bipartite spin glass (whose parties consist of
Ising and Gaussian spins respectively), we give a complete control of the whole
annealed region. The strategy explored is based on an interpolation between the
bipartite system and two independent spin glasses built respectively by
dichotomic and Gaussian spins: Critical line, behavior of the principal
thermodynamic observables and their fluctuations as well as overlap
fluctuations are obtained and discussed. Then, we move further, extending such
an equivalence beyond the critical line, to explore the broken ergodicity phase
under the assumption of replica symmetry and we show that the quenched free
energy of this (analogical) Hopfield model can be described as a linear
combination of the two quenched spin-glass free energies even in the replica
symmetric framework
- âŠ