2 research outputs found

    Magnetic field perturbation of neural recording and stimulating microelectrodes

    Full text link
    To improve the overall temporal and spatial resolution of brain mapping techniques, in animal models, some attempts have been reported to join electrophysiological methods with functional magnetic resonance imaging (fMRI). However, little attention has been paid to the image artefacts produced by the microelectrodes that compromise the anatomical or functional information of those studies. This work presents a group of simulations and MR images that show the limitations of wire microelectrodes and the potential advantages of silicon technology, in terms of image quality, in MRI environments. Magnetic field perturbations are calculated using a Fourier-based method for platinum (Pt) and tungsten (W) microwires as well as two different silicon technologies. We conclude that image artefacts produced by microelectrodes are highly dependent not only on the magnetic susceptibility of the materials used but also on the size, shape and orientation of the electrodes with respect to the main magnetic field. In addition silicon microelectrodes present better MRI characteristics than metallic microelectrodes. However, metallization layers added to silicon materials can adversely affect the quality of MR images. Therefore only those silicon microelectrodes that minimize the amount of metallic material can be considered MR-compatible and therefore suitable for possible simultaneous fMRI and electrophysiological studies. High resolution gradient echo images acquired at 2 T (TR/TE = 100/15 ms, voxel size = 100 × 100 × 100 µm3) of platinum–iridium (Pt–Ir, 90%–10%) and tungsten microwires show a complete signal loss that covers a volume significantly larger than the actual volume occupied by the microelectrodes: roughly 400 times larger for Pt–Ir and 180 for W, at the tip of the microelectrodes. Similar MR images of a single-shank silicon microelectrode only produce a partial volume effect on the voxels occupied by the probe with less than 50% of signal loss.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58101/2/pmb7_8_003.pd

    Mapping metabolic changes associated with early Radiation Induced Lung Injury post conformal radiotherapy using hyperpolarized ¹³C-pyruvate Magnetic Resonance Spectroscopic Imaging.

    No full text
    PURPOSE: Radiation Pneumonitis (RP) limits radiotherapy. Detection of early metabolic changes in the lungs associated with RP may provide an opportunity to adjust treatment before substantial toxicities occur. In this work, regional lactate-to-pyruvate signal ratio (lac/pyr) was quantified in rat lungs and heart following administration of hyperpolarized (13)C-pyruvate magnetic resonance imaging (MRI) at day 5, 10, 15 and 25-post conformal radiotherapy. These results were also compared to histology and blood analyses. METHODS: The lower right lungs of 12 Sprague Dawley rats were irradiated in 2 fractions with a total dose of 18.5 Gy using a modified micro-CT system. Regional lactate and pyruvate data were acquired from three irradiated and three age-matched healthy rats at each time point on days 5, 10, 15 and 25-post radiotherapy. Arterial blood was collected from each animal prior to the (13)C-pyruvate injection and was analyzed for blood lactate concentration and arterial oxygen concentration (paOâ‚‚). Macrophage count was computed from the histology of all rat lungs. RESULTS: A significant increase in lac/pyr was observed in both right and left lungs of the irradiated cohort compared to the healthy cohort for all time points. No increase in lac/pyr was observed in the hearts of the irradiated cohort compared to the hearts of the healthy cohorts. Blood lactate concentration and paO2 did not show a significant change between the irradiated and the healthy cohorts. Macrophage count in both right and left lungs was elevated for the irradiated cohort compared to the healthy cohort. CONCLUSIONS: Metabolic changes associated with RP may be mapped as early as five days post conformal radiotherapy. Over the small sample size in each cohort, elevated macrophage count, consistent with early phase of inflammation was highly correlated to increases in lac/pyr in both the irradiated and unirradiated lungs. Further experiments with larger sample size may improve the confidence of this finding
    corecore