9 research outputs found

    World Aquaculture: Environmental Impacts and Troubleshooting Alternatives

    Get PDF
    Aquaculture has been considered as an option to cope with the world food demand. However, criticisms have arisen around aquaculture, most of them related to the destruction of ecosystems such as mangrove forest to construct aquaculture farms, as well as the environmental impacts of the effluents on the receiving ecosystems. The inherent benefits of aquaculture such as massive food production and economical profits have led the scientific community to seek for diverse strategies to minimize the negative impacts, rather than just prohibiting the activity. Aquaculture is a possible panacea, but at present is also responsible for diverse problems related with the environmental health; however the new strategies proposed during the last decade have proven that it is possible to achieve a sustainable aquaculture, but such strategies should be supported and proclaimed by the different federal environmental agencies from all countries. Additionally there is an urgent need to improve legislation and regulation for aquaculture. Only under such scenario, aquaculture will be a sustainable practice

    Where are the Penaeids crustins?

    No full text
    Crustins are antimicrobial peptides and members of the four-disulfide core (4-DSC) domain-containing proteins superfamily. To date, crustins have only been reported in crustaceans and possess a structural signature characterized by a single 4-DSC domain and one cysteine-rich region. The high-throughput sequencing technologies have produced vastly valuable genomic information that sometimes dilutes information about previously sequenced molecules. This study aimed (1) to corroborate the loss of valuable descriptive information regarding crustin identification when high throughput sequencing carries out automatic annotation processes and (2) to detect possible crustin sequences reported in Penaeids to attempt a list considering structural similarities, which allows the establishment of phylogenetic relationships based on molecular characteristics. All crustins sequences reported in Penaeids and registered in the databases were obtained. The first list was made with the proteins reported as crustin or carcinin, excluding those that did not meet the structural characteristics. Subsequently, using local alignments, sequences were sought with high similarity even if they had been reported with a different name of crustin but with a probability of being crustin. This broader list, including proteins with high structural similarity, can help establish phylogenetic relationships of shrimp genes and the evolutionary trajectory of this antimicrobial distributed exclusively among crustaceans. Results revealed that in most sequences obtained by Sanger or transcriptomics, which met the structural criteria, the identification was correctly established as crustin. Contrarily, the sequences corresponding to crustins obtained by whole genome sequencing projects were incorrectly classified or not characterized, being momentarily “buried” in the information generated. In addition, the sequences that complied with the criteria of crustin tended to be grouped into species separated by geographical regions; for example, the crustins of the inhabitant shrimp of the American coasts differ from those corresponding to the natives of the Asian coasts. Finally, the results suggest the convenience of annotations considering the previous but correct information, even if such information was generated with previous technologies

    How conserved are the conserved 16S-rRNA regions?

    No full text
    The 16S rRNA gene has been used as master key for studying prokaryotic diversity in almost every environment. Despite the claim of several researchers to have the best universal primers, the reality is that no primer has been demonstrated to be truly universal. This suggests that conserved regions of the gene may not be as conserved as expected. The aim of this study was to evaluate the conservation degree of the so-called conserved regions flanking the hypervariable regions of the 16S rRNA gene. Data contained in SILVA database (release 123) were used for the study. Primers reported as matches of each conserved region were assembled to form contigs; sequences sizing 12 nucleotides (12-mers) were extracted from these contigs and searched into the entire set of SILVA sequences. Frequency analysis shown that extreme regions, 1 and 10, registered the lowest frequencies. 12-mer frequencies revealed segments of contigs that were not as conserved as expected (≤90%). Fragments corresponding to the primer contigs 3, 4, 5b and 6a were recovered from all sequences in SILVA database. Nucleotide frequency analysis in each consensus demonstrated that only a small fraction of these so-called conserved regions is truly conserved in non-redundant sequences. It could be concluded that conserved regions of the 16S rRNA gene exhibit considerable variation that has to be considered when using this gene as biomarker

    Effect of alternative mediums on production and proximate composition of the microalgae Chaetoceros muelleri as food in culture of the copepod Acartia sp. Efecto de medios alternativos sobre la producción y composición proximal de la microalga Chaetoceros muelleri como alimento en cultivo del copépodo Acartia sp.

    No full text
    Microalgae Chaetoceros muelleri was cultured in three different mediums consisting on an agricultural fertilizer (Agr-F), aquacultural fertilizer (Aq-F) and a conventional medium (F/2, control). These microalgae were later used as natural food to culture the copepod Acartia sp. The productive response and chemical proximate composition of microalgae and copepods were monitored. Growth rate and final cell concentration were higher in microalgae cultured in Agr-F compared to the control. In addition, the final biomass and cellular concentration were also the highest in Agr-F. Microalgae from Agr-F and Aq-F had higher carbohydrate and lower protein contents than those in the control. No differences in lipid and ash contents were observed. Regarding copepod production, higher densities and fecundity indexes were observed for those fed with microalgae previously cultured in Agr-F and Aq-F, compared to the control. The adult-nauplii ratio was also higher in copepods fed on microalgae from Agr-F compared to Aq-F and control. Copepods fed on Agr-F and Aq-F microalgae, had higher protein content compared to those fed on control microalgae; carbohydrates were higher in copepods fed on Agr-F as compared to Aq-F microalgae. No differences in lipid and ash contents were registered. Agr-F and Aq-F were adequate alternative mediums to produce C. muelleri, which produced higher quality microalgae that increased the copepod production.La microalga Chaetoceros muelleri fue cultivada en tres medios diferentes basados en un fertilizante agrícola (Agr-F), un fertilizante acuícola (Aq-F) y un medio convencional (F/2, control). Éstas microalgas fueron posteriormente utilizadas como alimento natural para cultivar el copépodo Acartia sp. La respuesta productiva y la composición proximal de las microalgas y copépodos fueron monitoreadas. La tasa de crecimiento y concentración final de células fueron mayores en la microalga cultivada en Agr-F, comparada con el control. La biomasa y concentración celular finales también fueron más altas en Agr-F. Las microalgas de Agr-F y Aq-F tuvieron mayor contenido de carbohidratos y menor contenido de proteína en comparación con el control. No se observaron diferencias en los contenidos de lípidos y cenizas. Respecto a la producción de copépodos, las mayores densidades e índices de fecundidad se observaron en los organismos alimentados con microalgas producidas en Agr-F y Aq-F, en comparación con el control. La proporción adulto-nauplio también fue mayor en copépodos alimentados con microalga de Agr-F comparada con Aq-F y el control. Los copépodos alimentados con microalgas del Agr-F y Aq-F, tuvieron un mayor contenido de proteínas que el control; la cantidad de carbohidratos fue mayor en copépodos alimentados con microalga del Agr-F comparada con Aq-F. No se observaron diferencias en los contenidos de lípidos y cenizas. Agr-F y Aq-F fueron medios alternativos adecuados para producir C. muelleri, los cuales produjeron microalgas de alta calidad que incrementaron la producción de copépodos
    corecore