41 research outputs found

    BayesOpt: A Bayesian Optimization Library for Nonlinear Optimization, Experimental Design and Bandits

    Get PDF
    BayesOpt is a library with state-of-the-art Bayesian optimization methods to solve nonlinear optimization, stochastic bandits or sequential experimental design problems. Bayesian optimization is sample efficient by building a posterior distribution to capture the evidence and prior knowledge for the target function. Built in standard C++, the library is extremely efficient while being portable and flexible. It includes a common interface for C, C++, Python, Matlab and Octave

    Practical Bayesian optimization in the presence of outliers

    Get PDF
    Inference in the presence of outliers is an important field of research as outliers are ubiquitous and may arise across a variety of problems and domains. Bayesian optimization is method that heavily relies on probabilistic inference. This allows outstanding sample efficiency because the probabilistic machinery provides a memory of the whole optimization process. However, that virtue becomes a disadvantage when the memory is populated with outliers, inducing bias in the estimation. In this paper, we present an empirical evaluation of Bayesian optimization methods in the presence of outliers. The empirical evidence shows that Bayesian optimization with robust regression often produces suboptimal results. We then propose a new algorithm which combines robust regression (a Gaussian process with Student-t likelihood) with outlier diagnostics to classify data points as outliers or inliers. By using an scheduler for the classification of outliers, our method is more efficient and has better convergence over the standard robust regression. Furthermore, we show that even in controlled situations with no expected outliers, our method is able to produce better results.Comment: 10 pages (2 of references), 6 figures, 1 algorith

    Unscented Bayesian Optimization for Safe Robot Grasping

    Get PDF
    We address the robot grasp optimization problem of unknown objects considering uncertainty in the input space. Grasping unknown objects can be achieved by using a trial and error exploration strategy. Bayesian optimization is a sample efficient optimization algorithm that is especially suitable for this setups as it actively reduces the number of trials for learning about the function to optimize. In fact, this active object exploration is the same strategy that infants do to learn optimal grasps. One problem that arises while learning grasping policies is that some configurations of grasp parameters may be very sensitive to error in the relative pose between the object and robot end-effector. We call these configurations unsafe because small errors during grasp execution may turn good grasps into bad grasps. Therefore, to reduce the risk of grasp failure, grasps should be planned in safe areas. We propose a new algorithm, Unscented Bayesian optimization that is able to perform sample efficient optimization while taking into consideration input noise to find safe optima. The contribution of Unscented Bayesian optimization is twofold as if provides a new decision process that drives exploration to safe regions and a new selection procedure that chooses the optimal in terms of its safety without extra analysis or computational cost. Both contributions are rooted on the strong theory behind the unscented transformation, a popular nonlinear approximation method. We show its advantages with respect to the classical Bayesian optimization both in synthetic problems and in realistic robot grasp simulations. The results highlights that our method achieves optimal and robust grasping policies after few trials while the selected grasps remain in safe regions.Comment: conference pape

    Fully Distributed Bayesian Optimization with Stochastic Policies

    Get PDF
    Bayesian optimization has become a popular method for high-throughput computing, like the design of computer experiments or hyperparameter tuning of expensive models, where sample efficiency is mandatory. In these applications, distributed and scalable architectures are a necessity. However, Bayesian optimization is mostly sequential. Even parallel variants require certain computations between samples, limiting the parallelization bandwidth. Thompson sampling has been previously applied for distributed Bayesian optimization. But, when compared with other acquisition functions in the sequential setting, Thompson sampling is known to perform suboptimally. In this paper, we present a new method for fully distributed Bayesian optimization, which can be combined with any acquisition function. Our approach considers Bayesian optimization as a partially observable Markov decision process. In this context, stochastic policies, such as the Boltzmann policy, have some interesting properties which can also be studied for Bayesian optimization. Furthermore, the Boltzmann policy trivially allows a distributed Bayesian optimization implementation with high level of parallelism and scalability. We present results in several benchmarks and applications that shows the performance of our method

    Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation

    Full text link
    Efficiently tackling multiple tasks within complex environment, such as those found in robot manipulation, remains an ongoing challenge in robotics and an opportunity for data-driven solutions, such as reinforcement learning (RL). Model-based RL, by building a dynamic model of the robot, enables data reuse and transfer learning between tasks with the same robot and similar environment. Furthermore, data gathering in robotics is expensive and we must rely on data efficient approaches such as model-based RL, where policy learning is mostly conducted on cheaper simulations based on the learned model. Therefore, the quality of the model is fundamental for the performance of the posterior tasks. In this work, we focus on improving the quality of the model and maintaining the data efficiency by performing active learning of the dynamic model during a preliminary exploration phase based on maximize information gathering. We employ Bayesian neural network models to represent, in a probabilistic way, both the belief and information encoded in the dynamic model during exploration. With our presented strategies we manage to actively estimate the novelty of each transition, using this as the exploration reward. In this work, we compare several Bayesian inference methods for neural networks, some of which have never been used in a robotics context, and evaluate them in a realistic robot manipulation setup. Our experiments show the advantages of our Bayesian model-based RL approach, with similar quality in the results than relevant alternatives with much lower requirements regarding robot execution steps. Unlike related previous studies that focused the validation solely on toy problems, our research takes a step towards more realistic setups, tackling robotic arm end-tasks
    corecore